
GAUTAM SINGH STUDY MATERIAL ς Additional Material 0 7830294949

THANKS FOR READING ï VISIT OUR WEBSITE www.educatererindia.com

Unit 23. Data Structure and Algorithms

Data Structures & Algorithms - Overview

Data Structure is a systematic way to organize data in order to use it efficiently.

Following terms are the foundation terms of a data structure.

¶ Interface ĭ Each data structure has an interface. Interface represents the set of

operations that a d ata structure supports. An interface only provides the list of

supported operations, type of parameters they can accept and return type of these

operations.

¶ Implementation ĭ Implementation provides the internal representation of a data

structure. Implement ation also provides the definition of the algorithms used in the

operations of the data structure.

Characteristics of a Data Structure
¶ Correctness ĭ Data structure implementation should implement its interface correctly.

¶ Time Complexity ĭ Running time or the execution time of operations of data structure

must be as small as possible.

¶ Space Complexity ĭ Memory usage of a data structure operation should be as little as

possible.

Need for Data Structure
As applications are getting complex and data rich, there are three common

problems that applications face now -a-days.

¶ Data Search ĭ Consider an inventory of 1 million(106) items of a store. If the application

is to search an item, it has to search an item in 1 million(1 06) items every time slowing

down the search. As data grows, search will become slower.

http://www.educatererindia.com/

GAUTAM SINGH STUDY MATERIAL ς Additional Material 0 7830294949

THANKS FOR READING ï VISIT OUR WEBSITE www.educatererindia.com

¶ Processor speed ĭ Processor speed although being very high, falls limited if the data

grows to billion records.

¶ Multiple requests ĭ As thousands of users can search data simultaneously on a web

server, even the fast server fails while searching the data.

To solve the above -mentioned problems, data structures come to rescue . Data can

be organized in a data structure in such a way that all items may not be required

to be searched, and the required data can be searched almost instantly.

Execution Time Cases
There are three cases which are usually used to compare various data s tructure's

execution time in a relative manner.

¶ Worst Case ĭ This is the scenario where a particular data structure operation takes

maximum time it can take. If an operation's worst case time is ä(n) then this operation

will not take more than ä(n) time where ä(n) represents function of n.

¶ Average Case ĭ This is the scenario depicting the average execution time of an operation

of a data structure. If an operation takes ä(n) time in execution, then m operations will

take mä(n) time.

¶ Best Case ĭ This is the scenario depicting the least possible execution time of an

operation of a data structure. If an operation takes ä(n) time in execution, then the

actual operation may take time as the random number which would be maximum as

ä(n).

Basic Terminology
¶ Data ĭ Data are values or set of values.

¶ Data Item ĭ Data item refers to single unit of values.

¶ Group Items ĭ Data items that are divided into sub items are called as Group Items.

¶ Elementary Items ĭ Data items that cannot be divided are called as Elementary Items.

¶ Attribute and Entity ĭ An entity is that which contains certain attributes or properties,

which may be assigned values.

¶ Entity Set ĭ Entities of similar attributes form an entity set.

¶ Field ĭ Field is a single elementary unit of information representing an attribute of an

entity.

¶ Record ĭ Record is a collection of field values of a given entity.

http://www.educatererindia.com/

GAUTAM SINGH STUDY MATERIAL ς Additional Material 0 7830294949

THANKS FOR READING ï VISIT OUR WEBSITE www.educatererindia.com

¶ File ĭ File is a collection of records of the entities in a given entity set.

Data Structures - Environment Setup
Try it Option Online
You really do not need to set up your own environment to start learning C

programming language. Reason is very simple, we already have set up C

Programming environment online, so that you can compile and execute all the

available examples online at the same time when you are doing your theory work.

This gives you confidence in what you are reading and to check the result with

different options. Feel free to modify any example and execute it online.

Try the following exam ple using the Try it option available at the top right corner

of the sample code box ĭ

#include <stdio.h>

int main(){
 /* My first program in C */
 printf("Hello, World! \ n");
 return 0;
}

For most of the examples given in this tutorial, you will find Try it option, so just

make use of it and enjoy your learning.

Local Environment Setup
If you are still willing to set up your environment for C programming language, you

need the following two tools available on your computer, (a) Text Editor and (b) The

C Compiler.

Text Editor

This will be used to type your program. Examples of few editors include Windows

Notepad, OS Edit command, Brief, Epsilon, EMACS, and vim or vi.

The name and the version of the text editor can vary on different operating systems.

For example, Notepad will be used on Windows, and vim or vi can be used on

Windows as well as Linux or UNIX.

The files you create with your editor are called source files and contain program

sourc e code. The source files for C programs are typically named with the extension

".c ".

Before starting your programming, make sure you have one text editor in place and

you have enough experience to write a computer program, save it in a file, compile

it, an d finally execute it.

http://www.educatererindia.com/

GAUTAM SINGH STUDY MATERIAL ς Additional Material 0 7830294949

THANKS FOR READING ï VISIT OUR WEBSITE www.educatererindia.com

The C Compiler

The source code written in the source file is the human readable source for your

program. It needs to be "compiled", to turn into machine language so that your CPU

can actually execute the program as per the given instr uctions.

This C programming language compiler will be used to compile your source code

into a final executable program. We assume you have the basic knowledge about a

programming language compiler.

Most frequently used and free available compiler is GNU C/ C++ compiler.

Otherwise, you can have compilers either from HP or Solaris if you have respective

Operating Systems (OS).

The following section guides you on how to install GNU C/C++ compiler on various

OS. We are mentioning C/C++ together because GNU GCC c ompiler works for both

C and C++ programming languages.

Installation on UNIX/Linux
If you are using Linux or UNIX , then check whether GCC is installed on your

system by entering the following command from the command line ĭ

$ gcc -v

If you have GNU compiler installed on your machine, then it should print a message

such as the following ĭ

Using built -in specs.

Target: i386 -redhat -linux
Configured with: ../configure --prefix = /usr
Thread model: posix
gcc version 4.1.2 20080704 (Red Hat 4.1.2 -46)

If GCC is not installed, then you will have to install it yourself using the detailed

instructions available at https://gcc.gnu.org/install/

This tutoria l has been written based on Linux and all the given examples have been

compiled on Cent OS flavor of Linux system.

Installation on Mac OS
If you use Mac OS X, the easiest way to obtain GCC is to download the Xcode

development environment from Apple's websi te and follow the simple installation

instructions. Once you have Xcode setup, you will be able to use GNU compiler for

C/C++.

Xcode is currently available at developer.apple.com/t echnologies/tools/

http://www.educatererindia.com/
https://gcc.gnu.org/install/
https://developer.apple.com/technologies/tools/

GAUTAM SINGH STUDY MATERIAL ς Additional Material 0 7830294949

THANKS FOR READING ï VISIT OUR WEBSITE www.educatererindia.com

Installation on Windows
To install GCC on Windows, you need to install MinGW. To install MinGW, go to

the MinGW homepage, www.mingw.org , and follow the link to the MinGW download

page. Do wnload the latest version of the MinGW installation program, which should

be named MinGW -<version>.exe.

While installing MinWG, at a minimum, you must install gcc -core, gcc -g++,

binutils, and the MinGW runtime, but you may wish to install more.

Add the bin subdirectory of your MinGW installation to your PATH environment

variable, so that you can specify these tools on the command line by their simple

names.

When the installation is complete, you will be able to run gcc, g++, ar, ranlib, dlltool,

and several other GNU tools from the Windows command line.

Data Structures - Algorithms Basics
Algorithm is a step -by-step procedure, which defines a set of instructions to be

executed in a certain order to get the desired output. Algorithms are generally

created inde pendent of underlying languages, i.e. an algorithm can be implemented

in more than one programming language.

From the data structure point of view, following are some important categories of

algorithms ĭ

¶ Search ĭ Algorithm to search an item in a data structure.

¶ Sort ĭ Algorithm to sort items in a certain order.

¶ Insert ĭ Algorithm to insert item in a data structure.

¶ Update ĭ Algorithm to update an existing item in a data structure.

¶ Delete ĭ Algorithm to delete an existing item from a data structure.

Characteristics of an Algorithm
Not all procedures can be called an algorithm. An algorithm should have the

following characteristics ĭ

¶ Unambiguous ĭ Algorithm should be clear and unambiguous. Each of its steps (or

phas es), and their inputs/outputs should be clear and must lead to only one meaning.

¶ Input ĭ An algorithm should have 0 or more well-defined inputs.

http://www.educatererindia.com/
http://www.mingw.org/

GAUTAM SINGH STUDY MATERIAL ς Additional Material 0 7830294949

THANKS FOR READING ï VISIT OUR WEBSITE www.educatererindia.com

¶ Output ĭ An algorithm should have 1 or more well-defined outputs, and should match

the desired output.

¶ Finitene ss ĭ Algorithms must terminate after a finite number of steps.

¶ Feasibility ĭ Should be feasible with the available resources.

¶ Independent ĭ An algorithm should have step-by-step directions, which should be

independent of any programming code.

How to Write an Algorithm?
There are no well -defined standards for writing algorithms. Rather, it is problem

and resource dependent. Algorithms are never written to support a particular

programming code.

As we know that all programming languages share basi c code constructs like loops

(do, for, while), flow -control (if -else), etc. These common constructs can be used to

write an algorithm.

We write algorithms in a step -by-step manner, but it is not always the case.

Algorithm writing is a process and is execut ed after the problem domain is well -

defined. That is, we should know the problem domain, for which we are designing

a solution.

Example

Let's try to learn algorithm -writing by using an example.

Problem ĭ Design an algorithm to add two numbers and display the result.

Step 1 ĭ START

Step 2 ĭ declare three integers a, b & c
Step 3 ĭ define values of a & b
Step 4 ĭ add values of a & b
Step 5 ĭ store output of step 4 to c
Step 6 ĭ print c
Step 7 ĭ STOP

Algori thms tell the programmers how to code the program. Alternatively, the

algorithm can be written as ĭ

Step 1 ĭ START ADD
Step 2 ĭ get values of a & b

Step 3 ĭ c ƀ a + b
Step 4 ĭ display c
Step 5 ĭ STOP

In design and analysis of algorithms, usually the second method is used to describe

an algorithm. It makes it easy for the analyst to analyze the algorithm ignoring all

unwanted definitions. He can observe what operations are being used and how the

process is flowing.

http://www.educatererindia.com/

GAUTAM SINGH STUDY MATERIAL ς Additional Material 0 7830294949

THANKS FOR READING ï VISIT OUR WEBSITE www.educatererindia.com

Writing step numbers , is optional.

We design an algorithm to get a solution of a given problem. A problem can be

solved in more than one ways.

Hence, many solution algorithms can be derived for a given problem. The next step

is to analyze those proposed solution algorithms and implement the best suitable

solution.

Algorithm Analysis
Efficiency of an algorithm can be analyzed at two different stages, before

implementation and after implementation. They are the following ĭ

¶ A Priori Analysis ĭ This is a theoretical analysis of an algorithm. Efficiency of an

algorithm is measured by assum ing that all other factors, for example, processor speed,

are constant and have no effect on the implementation.

¶ A Posterior Analysis ĭ This is an empirical analysis of an algorithm. The selected

algorithm is implemented using programming language. This is then executed on target

computer machine. In this analysis, actual statistics like running time and space

required, are collected.

We shall learn about a priori algorithm analysis. Algorithm analysis deals with the

execution or running time of various operations involved. The running time of an

operation can be defined as the number of computer instructions executed per

operation.

Algorithm Complexity
Suppose X is an algorithm and n is the size of input data, the time and space used

by the algorithm X are the two main factors, which decide the efficiency of X.

http://www.educatererindia.com/

GAUTAM SINGH STUDY MATERIAL ς Additional Material 0 7830294949

THANKS FOR READING ï VISIT OUR WEBSITE www.educatererindia.com

¶ Time Factor ĭ Time is measured by counting the number of key operations such as

comparisons in the sorting algorithm.

¶ Space Factor ĭ Space is measured by counting the maximum memory space required

by the algorithm.

The complexity of an algorithm f(n) gives the running time and/or the storage space

required by the algorithm in terms of n as the size of input da ta.

Space Complexity
Space complexity of an algorithm represents the amount of memory space required

by the algorithm in its life cycle. The space required by an algorithm is equal to the

sum of the following two components ĭ

¶ A fixed part that is a space r equired to store certain data and variables, that are

independent of the size of the problem. For example, simple variables and constants

used, program size, etc.

¶ A variable part is a space required by variables, whose size depends on the size of the

probl em. For example, dynamic memory allocation, recursion stack space, etc.

Space complexity S(P) of any algorithm P is S(P) = C + SP(I), where C is the fixed

part and S(I) is the variable part of the algorithm, which depends on instance

characteristic I. Following is a simple example that tries to explain the concept ĭ

Algorithm: SUM(A, B)
Step 1 - START
Step 2 - C ƀ A + B + 10
Step 3 - Stop

Here we have three variables A, B, and C and one constant. Hence S(P) = 1 + 3.

Now, space depends on data types of given variables and constant types and it will

be multiplied accordingly.

Time Complexity
Time complexity of an algorithm represents the amount of time required by the

algorithm to run to completion. Time requirements can be defined as a numerical

function T(n), where T(n) can be measured as the number of steps, provided each

step consumes constant time.

For example, addition of two n -bit integers takes n steps. Consequently, the total

computational time is T(n) = c zn, where c is the time taken for the addition of two

bits. Here, we observe that T(n) grows linearly as the input size increases.

Data Structures - Asymptotic Analysis

http://www.educatererindia.com/

GAUTAM SINGH STUDY MATERIAL ς Additional Material 0 7830294949

THANKS FOR READING ï VISIT OUR WEBSITE www.educatererindia.com

Asymptotic analysis of an algorithm refers to defining the mathematical

boundation/framing of its run -time performance. Using asymptotic analysis, we

can very well conclude the best case, average case, and worst case scenario of an

algorithm.

Asymptotic analysis is input bound i.e., if there's no input to the algorithm, it is

concluded to work in a constant time. Other than the "input" all other factors are

considered constant.

Asymptotic analysis refer s to computing the running time of any operation in

mathematical units of computation. For example, the running time of one operation

is computed as f(n) and may be for another operation it is computed as g(n2). This

means the first operation running time will increase linearly with the increase

in n and the running time of the second operation will increase exponentially

when n increases. Similarly, the running time of both operations will be nearly the

same if n is significantly small.

Usually, the time r equired by an algorithm falls under three types ĭ

¶ Best Case ĭ Minimum time required for program execution.

¶ Average Case ĭ Average time required for program execution.

¶ Worst Case ĭ Maximum time required for program execution.

Asymptotic Notations
Following are the commonly used asymptotic notations to calculate the running

time complexity of an algorithm.

¶ ǯ Notation

¶ Ǹ Notation

¶ ȇ Notation

Big Oh Notation, ǯ

The notation ǯ(n) is the formal way to express the upper bound of an algorithm's

running time. It measures the worst case time complexity or the longest amount of

time an algorithm can possibly take to complete.

http://www.educatererindia.com/

GAUTAM SINGH STUDY MATERIAL ς Additional Material 0 7830294949

THANKS FOR READING ï VISIT OUR WEBSITE www.educatererindia.com

For example, for a function f (n)

ǯ(f(n)) = { g(n) : there exists c > 0 and n0 such that f(n) Ò c.g(n) for all n > n0. }

Omega Notation, Ǹ

The notation Ǹ(n) is the formal way to express the lower bound of an algorithm's

running time. It measures the best case time complexity or the best amount of time

an algorithm can possibly take to complete.

For example, for a function f (n)

Ǹ(f(n)) Ó { g(n) : there exists c > 0 and n0 such that g(n) Ò c.f(n) for all n > n0. }

Theta Notation, ȇ

The notati on ȇ(n) is the formal way to express both the lower bound and the upper

bound of an algorithm's running time. It is represented as follows ĭ

http://www.educatererindia.com/

GAUTAM SINGH STUDY MATERIAL ς Additional Material 0 7830294949

THANKS FOR READING ï VISIT OUR WEBSITE www.educatererindia.com

ȇ(f(n)) = { g(n) if and only if g(n) = ǯ(f(n)) and g(n) = Ǹ(f(n)) for all n > n0. }

Common Asymptotic Notations
Following is a list of some common asymptotic notations ĭ

constant ĭ ǯ(1)

logarithmic ĭ ǯ(log n)

linear ĭ ǯ(n)

n log n ĭ ǯ(n log n)

quadratic ĭ ǯ(n2)

cubic ĭ ǯ(n3)

polynomial ĭ nǯ(1)

exponential ĭ 2ǯ(n)

Data Structures - Greedy Algorithms
An algorithm is designed to achieve optimum solution for a given problem. In greedy

algorithm approach, decisions are made from the given solution domain. As being

greedy, the closest solution that seems to provide an optimum solution is chosen.

http://www.educatererindia.com/

GAUTAM SINGH STUDY MATERIAL ς Additional Material 0 7830294949

THANKS FOR READING ï VISIT OUR WEBSITE www.educatererindia.com

Greedy alg orithms try to find a localized optimum solution, which may eventually

lead to globally optimized solutions. However, generally greedy algorithms do not

provide globally optimized solutions.

Counting Coins
This problem is to count to a desired value by cho osing the least possible coins and

the greedy approach forces the algorithm to pick the largest possible coin. If we are

provided coins of 1, 2, 5 and 10 and we are asked to count 18 then the greedy

procedure will be ĭ

¶ 1 ĭ Select one 10 coin, the remaining count is 8

¶ 2 ĭ Then select one 5 coin, the remaining count is 3

¶ 3 ĭ Then select one 2 coin, the remaining count is 1

¶ 4 ĭ And finally, the selection of one 1 coins solves the problem

Though, it seems to be working fine, for this count we need to pick only 4 coins.

But if we slightly change the problem then the same approach may not be able to

produce the same optimum result.

For the currency system, where we have coins of 1, 7, 10 valu e, counting coins for

value 18 will be absolutely optimum but for count like 15, it may use more coins

than necessary. For example, the greedy approach will use 10 + 1 + 1 + 1 + 1 + 1,

total 6 coins. Whereas the same problem could be solved by using only 3 coins (7

+ 7 + 1)

Hence, we may conclude that the greedy approach picks an immediate optimized

solution and may fail where global optimization is a major concern.

Examples

Most networking algorithms use the greedy approach. Here is a list of few of them

ĭ

¶ Travelling Salesman Problem

¶ Prim's Minimal Spanning Tree Algorithm

¶ Kruskal's Minimal Spanning Tree Algorithm

¶ Dijkstra's Minimal Spanning Tree Algorithm

¶ Graph - Map Coloring

¶ Graph - Vertex Cover

¶ Knapsack Problem

http://www.educatererindia.com/

GAUTAM SINGH STUDY MATERIAL ς Additional Material 0 7830294949

THANKS FOR READING ï VISIT OUR WEBSITE www.educatererindia.com

¶ Job Scheduling Problem

There are lots of sim ilar problems that uses the greedy approach to find an

optimum solution.

Data Structures - Divide and Conquer
In divide and conquer approach, the problem in hand, is divided into smaller sub -

problems and then each problem is solved independently. When we keep on

dividing the subproblems into even smaller sub -problems, we may eventually reach

a stage where no more division is possible. Those "atomic" smallest possible sub -

problem (fractions) are solved. The solution of all sub -problems is finally merged in

order to obtain the solution of an original problem.

Broadly, we can understand divide -and -conquer approach in a three -step process.

Divide/Break
This step involves breaking the problem into smaller sub -problems. Sub -problems

should represent a part of the original problem. This step generally takes a

recursive approach to divide the problem until no sub -problem is further divisible.

At this stage, sub -problems become atomic in nature but still represent some part

of the actual problem.

Conquer /Solve
This step receives a lot of smaller sub -problems to be solved. Generally, at this

level, the problems are considered 'solved' on their own.

http://www.educatererindia.com/

GAUTAM SINGH STUDY MATERIAL ς Additional Material 0 7830294949

THANKS FOR READING ï VISIT OUR WEBSITE www.educatererindia.com

Merge/Combine
When the smaller sub -problems are solved, this stage recursively combines them

until they formu late a solution of the original problem. This algorithmic approach

works recursively and conquer & merge steps works so close that they appear as

one.

Examples

The following computer algorithms are based on divide -and -conquer programming

approach ĭ

¶ Merge So rt

¶ Quick Sort

¶ Binary Search

¶ Strassen's Matrix Multiplication

¶ Closest pair (points)

There are various ways available to solve any computer problem, but the mentioned

are a good example of divide and conquer approach.

Data Structures - Dynamic Programming
Dynamic programming approach is similar to divide and conquer in breaking down

the problem into smaller and yet smaller possible sub -problems. But unlike, divide

and conquer, these sub -problems are not solved independently. Rather, results of

these smaller s ub -problems are remembered and used for similar or overlapping

sub -problems.

Dynamic programming is used where we have problems, which can be divided into

similar sub -problems, so that their results can be re -used. Mostly, these algorithms

are used for optimization. Before solving the in -hand sub -problem, dynamic

algorithm will try to examine the results of the previously solved sub -problems. The

solutions of sub -problems are combined in order to achieve the best solution.

So we can say that ĭ

¶ The problem should be able to be divided into smaller overlapping sub -problem.

¶ An optimum solution can be achieved by using an optimum solution of smaller sub -

problems.

¶ Dynamic algorithms use Memoization.

Comparison

http://www.educatererindia.com/

GAUTAM SINGH STUDY MATERIAL ς Additional Material 0 7830294949

THANKS FOR READING ï VISIT OUR WEBSITE www.educatererindia.com

In contrast to greedy algorithms, where local optimization is addressed, dynamic

algorithms are motivated for an overall optimizat ion of the problem.

In contrast to divide and conquer algorithms, where solutions are combined to

achieve an overall solution, dynamic algorithms use the output of a smaller sub -

problem and then try to optimize a bigger sub -problem. Dynamic algorithms use

Memoization to remember the output of already solved sub -problems.

Example

The following computer problems can be solved using dynamic programming

approach ĭ

¶ Fibonacci number series

¶ Knapsack problem

¶ Tower of Hanoi

¶ All pair shortest path by Floyd -Warshall

¶ Shortest path by Dijkstra

¶ Project scheduling

Dynamic programming can be used in both top -down and bottom -up manner. And

of course, most of the times, referring to the previous solution output is cheaper

than recomputing in terms of CPU cycles.

Data Structu res & Algorithm Basic
Concepts

This chapter explains the basic terms related to data structure.

Data Definition
Data Definition defines a particular data with the following characteristics.

¶ Atomic ĭ Definition should define a single concept.

¶ Traceable ĭ Definition should be able to be mapped to some data element.

¶ Accurate ĭ Definition should be unambiguous.

¶ Clear and Concise ĭ Definition should be understandable.

Data Object
Data Object represents an object having a data.

Data Type

http://www.educatererindia.com/

GAUTAM SINGH STUDY MATERIAL ς Additional Material 0 7830294949

THANKS FOR READING ï VISIT OUR WEBSITE www.educatererindia.com

Data type is a way to classify various types of data such as integer, string, etc.

which determines the values that can be used with the corresponding type of data,

the type of operations that can be performed on the corresponding type of data.

There are two data types ĭ

¶ Built -in Data Type

¶ Derived Data Type

Built -in Data Type

Those data types for which a language has built -in support are known as Built -in

Data types. For example, most of the languages provide the following built -in data

types.

¶ Integers

¶ Boolean (true, false)

¶ Floating (Decimal numbers)

¶ Character and Strings

Derived Data Type

Those data types which are implementation independent as they can be

implemented in one or the other way are known as derived data types. These data

types are normally built by the combinat ion of primary or built -in data types and

associated operations on them. For example ĭ

¶ List

¶ Array

¶ Stack

¶ Queue

Basic Operations
The data in the data structures are processed by certain operations. The particular

data structure chosen largely depends on the frequency of the operation that needs

to be performed on the data structure.

¶ Traversing

¶ Searching

¶ Insertion

¶ Deletion

http://www.educatererindia.com/

GAUTAM SINGH STUDY MATERIAL ς Additional Material 0 7830294949

THANKS FOR READING ï VISIT OUR WEBSITE www.educatererindia.com

¶ Sorting

¶ Merging

Data Structures and Algorithms - Arrays
Array is a container which can hold a fix number of items and these items should

be of the same type. Most of the data structures make use of arrays to implement

their algorithms. Following are the important terms to understand the concept of

Array.

¶ Elemen t ĭ Each item stored in an array is called an element.

¶ Index ĭ Each location of an element in an array has a numerical index, which is used

to identify the element.

Array Representation
Arrays can be declared in various ways in different languages. For ill ustration, let's

take C array declaration.

Arrays can be declared in various ways in different languages. For illustration, let's

take C array declaration.

As per the above illustration, following are the important points to be considered.

¶ Index starts with 0.

¶ Array length is 10 which means it can store 10 elements.

¶ Each element can be accessed via its index. For example, we can fetch an element at

index 6 as 9.

Basic Operat ions
Following are the basic operations supported by an array.

http://www.educatererindia.com/

GAUTAM SINGH STUDY MATERIAL ς Additional Material 0 7830294949

THANKS FOR READING ï VISIT OUR WEBSITE www.educatererindia.com

¶ Traverse ĭ print all the array elements one by one.

¶ Insertion ĭ Adds an element at the given index.

¶ Deletion ĭ Deletes an element at the given index.

¶ Search ĭ Searches an element using the given index or by the value.

¶ Update ĭ Updates an element at the given index.

In C, when an array is initialized with size, then it assigns defaults values to its

elements in following order.

Data Type Default Value

bool fal se

char 0

int 0

float 0.0

double 0.0f

void

wchar_t 0

Insertion Operation
Insert operation is to insert one or more data elements into an array. Based on the

requirement, a new element can be added at the beginning, end, or any given index

of array.

Here, we see a practical implementation of insertion operation, where we add dat a

at the end of the array ĭ

Algorithm

Let Array be a linear unordered array of MAX elements.

http://www.educatererindia.com/

GAUTAM SINGH STUDY MATERIAL ς Additional Material 0 7830294949

THANKS FOR READING ï VISIT OUR WEBSITE www.educatererindia.com

Example

Result

Let LA be a Linear Array (unordered) with N elements and K is a positive integer

such that K<=N . Following is the algorithm where ITEM is inserted into the

Kth position of LA ĭ

1. Start
2. Set J = N
3. Set N = N+1
4. Repeat steps 5 and 6 while J >= K
5. Set LA[J+1] = LA[J]
6. Set J = J -1
7. Set LA[K] = ITEM
8. Stop

Example

Following is the implement ation of the above algorithm ĭ

 Live Demo

#includ e <stdio.h >

mai n() {

 in t LA[] = {1,3,5,7,8};

 in t item = 10, k = 3, n = 5;

 in t i = 0, j = n;

 print f("The original array elements are : \ n");

 for (i = 0; i<n; i++) {

 print f("LA[%d] = %d \ n", i, LA[i]);

 }

 n = n + 1;

 whil e(j >= k) {

 LA[j+1] = LA[j];

 j = j - 1;

http://www.educatererindia.com/
http://tpcg.io/YpAUzN

GAUTAM SINGH STUDY MATERIAL ς Additional Material 0 7830294949

THANKS FOR READING ï VISIT OUR WEBSITE www.educatererindia.com

 }

 LA[k] = ite m;

 print f("The array elements after insertion : \ n");

 for (i = 0; i<n; i++) {

 print f("LA[%d] = %d \ n", i, LA[i]);

 }

}

When we compile and execute the above program, it produces the following result

ĭ

Output

The original array elements are :

LA[0] = 1
LA[1] = 3
LA[2] = 5
LA[3] = 7
LA[4] = 8
The array elements after insertion :
LA[0] = 1
LA[1] = 3
LA[2] = 5
LA[3] = 10
LA[4] = 7
LA[5] = 8

For other variations of array insertion operation click here

Deletion Operation
Deletion refers to removing an existing element from the array and re -organizing

all elements of an array.

Alg orithm

Consider LA is a linear array with N elements and K is a positive integer such

that K<=N . Following is the algorithm to delete an element available at the

Kth position of LA.

1. Start
2. Set J = K
3. Repeat steps 4 and 5 while J < N

4. Set LA[J] = L A[J + 1]
5. Set J = J+1
6. Set N = N -1

http://www.educatererindia.com/
https://www.tutorialspoint.com/data_structures_algorithms/array_insertion_algorithm.htm

GAUTAM SINGH STUDY MATERIAL ς Additional Material 0 7830294949

THANKS FOR READING ï VISIT OUR WEBSITE www.educatererindia.com

7. Stop

Example

Following is the implementation of the above algorithm ĭ

 Live Demo

#includ e <stdio.h >

void mai n() {

 in t LA[] = {1,3,5,7,8};

 in t k = 3, n = 5;

 in t i, j;

 print f("The original array elements are : \ n");

 for (i = 0; i<n; i++) {

 print f("LA[%d] = %d \ n", i, LA[i]);

 }

 j = k ;

 whil e(j < n) {

 LA[j-1] = LA[j];

 j = j + 1;

 }

 n = n -1;

 print f("The array elements after deletion : \ n");

 for (i = 0; i<n; i++) {

 print f("LA[%d] = %d \ n", i, LA[i]);

http://www.educatererindia.com/
http://tpcg.io/3FCSPD

GAUTAM SINGH STUDY MATERIAL ς Additional Material 0 7830294949

THANKS FOR READING ï VISIT OUR WEBSITE www.educatererindia.com

 }

}

When we compile and execute the above program, it produces the following result

ĭ

Output

The original array elements are :

LA[0] = 1
LA[1] = 3
LA[2] = 5
LA[3] = 7
LA[4] = 8
The array elements after deletion :
LA[0] = 1

LA[1] = 3
LA[2] = 7
LA[3] = 8

Search Operation
You can perform a search for an array element based on its value or its index.

Algorithm

Consider LA is a linear ar ray with N elements and K is a positive integer such

that K<=N . Following is the algorithm to find an element with a value of ITEM using

sequential search.

1. Start
2. Set J = 0
3. Repeat steps 4 and 5 while J < N
4. IF LA[J] is equal ITEM THEN GOTO STEP 6
5. Set J = J +1

6. PRINT J, ITEM
7. Stop

Example

Following is the implementation of the above algorithm ĭ

 Live Demo

#includ e <stdio.h >

void mai n() {

 in t LA[] = {1,3,5,7,8};

 in t item = 5, n = 5;

 in t i = 0, j = 0;

http://www.educatererindia.com/
http://tpcg.io/613FSK

GAUTAM SINGH STUDY MATERIAL ς Additional Material 0 7830294949

THANKS FOR READING ï VISIT OUR WEBSITE www.educatererindia.com

 print f("The original array elements are : \ n");

 for (i = 0; i<n; i++) {

 print f("LA[%d] = %d \ n", i, LA[i]);

 }

 whil e(j < n){

 if(LA[j] == item) {

 brea k;

 }

 j = j + 1;

 }

 print f("Found element %d at position %d \ n", ite m, j+1);

}

When we compile and execute the above program, it produces the following result

ĭ

Output

The original array elements are :
LA[0] = 1
LA[1] = 3
LA[2] = 5
LA[3] = 7
LA[4] = 8
Found element 5 at position 3

Update Operation
Update operation refers to updating an existing element from the array at a given

index.

Algorithm

Consider LA is a linear array with N elements and K is a positive integer such

that K<=N . Following is the alg orithm to update an element available at the

Kth position of LA.

1. Start

http://www.educatererindia.com/

GAUTAM SINGH STUDY MATERIAL ς Additional Material 0 7830294949

THANKS FOR READING ï VISIT OUR WEBSITE www.educatererindia.com

2. Set LA[K -1] = ITEM

3. Stop

Example

Following is the implementation of the above algorithm ĭ

 Live Demo

#includ e <stdio.h >

void mai n() {

 in t LA[] = {1,3,5,7,8};

 in t k = 3, n = 5, item = 10;

 in t i, j;

 print f("The original array elements are : \ n");

 for (i = 0; i<n; i++) {

 print f("LA[%d] = %d \ n", i, LA[i]);

 }

 LA[k-1] = ite m;

 print f("The array elements after updation : \ n");

 for (i = 0; i<n; i++) {

 print f("LA[%d] = %d \ n", i, LA[i]);

 }

}

When we compile and execute the above program, it produces the following result

ĭ

Output

The original array elements are :

LA[0] = 1

http://www.educatererindia.com/
http://tpcg.io/EQ4FEy

GAUTAM SINGH STUDY MATERIAL ς Additional Material 0 7830294949

THANKS FOR READING ï VISIT OUR WEBSITE www.educatererindia.com

LA[1] = 3

LA[2] = 5
LA[3] = 7
LA[4] = 8
The array elements after updation :
LA[0] = 1
LA[1] = 3
LA[2] = 10
LA[3] = 7
LA[4] = 8

Data Structure and Algorithms - Linked
List

A linked list is a sequence of data structures, which are connected together via

links.

Linked List is a sequence of links which contains items. Each link contains a

connection to another link. Linked list is the second most -used data structure after

array . Following are the important terms to understand the concept of Linked List.

¶ Link ĭ Each link of a linked list can store a data called an element.

¶ Next ĭ Each link of a linked list contains a link to the next link called Next.

¶ LinkedList ĭ A Linked List contains the connection link to the first link called First.

Linked List Representation
Linked list can be visualized as a chain of nodes, where every node points to the

next node.

As per the above illustration, following are the important points to be considered.

¶ Linked List contains a link element called first.

¶ Each link carries a data field(s) and a link field called next.

¶ Each link is linked with its next link using its next link.

¶ Last link carries a link as null to mark the end of the list.

Types of Linked List
Following are the various types of linked list.

http://www.educatererindia.com/

GAUTAM SINGH STUDY MATERIAL ς Additional Material 0 7830294949

THANKS FOR READING ï VISIT OUR WEBSITE www.educatererindia.com

¶ Simple Linked List ĭ Item navigation is forward only.

¶ Doubly Link ed List ĭ Items can be navigated forward and backward.

¶ Circular Linked List ĭ Last item contains link of the first element as next and the first

element has a link to the last element as previous.

Basic Operations
Following are the basic operations supported by a list.

¶ Insertion ĭ Adds an element at the beginning of the list.

¶ Deletion ĭ Deletes an element at the beginning of the list.

¶ Display ĭ Displays the complete list.

¶ Search ĭ Searches an element using the given key.

¶ Delete ĭ Deletes an element using the given key.

Insertion Operation
Adding a new node in linked list is a more than one step activity. We shall learn

this with diagrams here. First, create a node using the same structure and find the

location where it has to be inserted.

Imagine that we are inserting a node B (NewNode), between A (LeftNode)

and C (RightNode). Then point B.next to C ĭ

NewNode.next ĭ> RightNode;

It sho uld look like this ĭ

http://www.educatererindia.com/

GAUTAM SINGH STUDY MATERIAL ς Additional Material 0 7830294949

THANKS FOR READING ï VISIT OUR WEBSITE www.educatererindia.com

Now, the next node at the left should point to the new node.

LeftNode.next ĭ> NewNode;

This will put the new node in the middle of the two. The new list should look like

this ĭ

Similar steps should be taken if the node is being inserted at the beginning of the

list. While inserting it at the end, the second last node of the list should point to

the new node and the new node will point to NULL.

Deletion Operation
Deletion is also a more than one step process. We shall learn with pictorial

representation. First, locate the target node to be removed, by using searching

algorithms.

http://www.educatererindia.com/

GAUTAM SINGH STUDY MATERIAL ς Additional Material 0 7830294949

THANKS FOR READING ï VISIT OUR WEBSITE www.educatererindia.com

The left (previous) node of the target node now shou ld point to the next node of the

target node ĭ

LeftNode.next ĭ> TargetNode.next;

This will remove the link that was pointing to the target node. Now, using the

following code, we will remove what the target node is pointing at.

TargetNode.next ĭ> NULL;

We need to use the deleted node. We can keep that in memory otherwise we can

simply deallocate memory and wipe off the target node completely.

Reverse Operation
This operation is a thorough one. We need to make the last node to be pointed by

the head node and reverse the whole linked list.

First, we traverse to the end of the list. It should be pointing to NULL. Now, we shall

make it point to its previous node ĭ

http://www.educatererindia.com/

GAUTAM SINGH STUDY MATERIAL ς Additional Material 0 7830294949

THANKS FOR READING ï VISIT OUR WEBSITE www.educatererindia.com

We have to make sure that the last node is not the lost node. So we'll have some

temp node, which looks like the head node pointing to the last node. Now, we shall

make all left side nodes point to their previous nodes one by one.

Except the node (first node) pointed by the head node, all nodes should point to

their predecessor, making them their new successor. The first node will point to

NULL.

We'll make the head node point to the new first node by using the temp node.

The linked list is now reversed. To see linked list implementation in C programming

language, please click here .

Data Structure - Doubly Linked List
Doub ly Linked List is a variation of Linked list in which navigation is possible in

both ways, either forward and backward easily as compared to Single Linked List.

Following are the important terms to understand the concept of doubly linked list.

¶ Link ĭ Each link of a linked list can store a data called an element.

¶ Next ĭ Each link of a linked list contains a link to the next link called Next.

http://www.educatererindia.com/
https://www.tutorialspoint.com/data_structures_algorithms/linked_list_program_in_c.htm

GAUTAM SINGH STUDY MATERIAL ς Additional Material 0 7830294949

THANKS FOR READING ï VISIT OUR WEBSITE www.educatererindia.com

¶ Prev ĭ Each link of a linked list contains a link to the previous link called Prev.

¶ LinkedList ĭ A Linked List contains the connection link to the first link called First and

to the last link called Last.

Doubly Linked List Representation

As per the above illustration, following are the important points to be considered.

¶ Doubly Linked List contains a link element called first and last.

¶ Each link carries a data field(s) and two link fields called next and prev.

¶ Each link is linked with its n ext link using its next link.

¶ Each link is linked with its previous link using its previous link.

¶ The last link carries a link as null to mark the end of the list.

Basic Operations
Following are the basic operations supported by a list.

¶ Insertion ĭ Adds an element at the beginning of the list.

¶ Deletion ĭ Deletes an element at the beginning of the list.

¶ Insert Last ĭ Adds an element at the end of the list.

¶ Delete Last ĭ Deletes an element from the end of the list.

¶ Insert After ĭ Adds an element after an item of the list.

¶ Delete ĭ Deletes an element from the list using the key.

¶ Display forward ĭ Displays the complete list in a forward manner.

¶ Display backward ĭ Displays the complete list in a backward manner.

Insertion Operation
Following code demonstrates the insertion operation at the beginning of a doubly

linked list.

http://www.educatererindia.com/

GAUTAM SINGH STUDY MATERIAL ς Additional Material 0 7830294949

THANKS FOR READING ï VISIT OUR WEBSITE www.educatererindia.com

Example

//insert link at the first locatio n

void insertFirs t (in t key, in t dat a) {

 //create a lin k

 struc t node *link = (struc t nod e*) mallo c(sizeof(struc t nod e));

 lin k->key = key;

 lin k->data = dat a;

 i f(isEmpt y()) {

 //make it the last lin k

 las t = lin k ;

 } else {

 //update first prev lin k

 head->prev = lin k ;

 }

 //point it to old first lin k

 lin k->nex t = head;

 //point first to new first lin k

 head = lin k ;

}

Deletion Operation
Following code demonstrates the deletion operation at the beginning of a doubly

linked list.

Example

//delete first ite m

struc t nod e* deleteFirs t () {

http://www.educatererindia.com/

GAUTAM SINGH STUDY MATERIAL ς Additional Material 0 7830294949

THANKS FOR READING ï VISIT OUR WEBSITE www.educatererindia.com

 //save reference to first lin k

 struc t node *tempLink = head;

 //if only one lin k

 i f(head->nex t == NULL) {

 las t = NULL;

 } else {

 head->nex t->prev = NULL;

 }

 head = head->nex t ;

 //return the deleted lin k

 retur n tempLin k;

}

Insertion at the End of an Operation
Following code demonstrates the insertion operation at the last position of a doubly

linked list.

Example

//insert link at the last locatio n

void insertLas t(in t key, in t dat a) {

 //create a lin k

 struc t node *link = (struc t nod e*) mallo c(sizeof(struc t nod e));

 lin k->key = key;

 lin k->data = dat a;

 i f(isEmpt y()) {

http://www.educatererindia.com/

GAUTAM SINGH STUDY MATERIAL ς Additional Material 0 7830294949

THANKS FOR READING ï VISIT OUR WEBSITE www.educatererindia.com

 //make it the last lin k

 las t = lin k ;

 } else {

 //make link a new last lin k

 las t ->nex t = lin k ;

 //mark old last node as prev of new lin k

 lin k->prev = las t ;

 }

 //point last to new last nod e

 las t = lin k ;

}

To see the implementation in C programming language, please click here .

Data Structure - Circular Linked List
Circular Linked List is a variation of Linked list in which the first element points to

the last element and the last element points to the first element. Both Singly Linked

List and Doubly Linked List can be made into a circular linked list.

Singly Linked List as Circular
In singly linked list, the next pointer of the last node points to the first node.

Doub ly Linked List as Circular
In doubly linked list, the next pointer of the last node points to the first node and

the previous pointer of the first node points to the last node making the circular in

both directions.

http://www.educatererindia.com/
https://www.tutorialspoint.com/data_structures_algorithms/doubly_linked_list_program_in_c.htm

GAUTAM SINGH STUDY MATERIAL ς Additional Material 0 7830294949

THANKS FOR READING ï VISIT OUR WEBSITE www.educatererindia.com

As per the above illustration, following are the important points to be considered.

¶ The last link's next points to the first link of the list in both cases of sin gly as well as

doubly linked list.

¶ The first link's previous points to the last of the list in case of doubly linked list.

Basic Operations
Following are the important operations supported by a circular list.

¶ insert ĭ Inserts an element at the start of the list.

¶ delete ĭ Deletes an element from the start of the list.

¶ display ĭ Displays the list.

Insertion Operation
Following code demonstrates the insertion operation in a circular linked list based

on single linked list.

Example

//insert link at the first locatio n

void insertFirs t (in t key, in t dat a) {

 //create a lin k

 struc t node *link = (struc t nod e*) mallo c(sizeof(struc t nod e));

 lin k->key = key;

 lin k->dat a= dat a;

 i f (isEmpt y()) {

 head = lin k ;

 head->nex t = head;

 } else {

 //point it to old first nod e

http://www.educatererindia.com/

GAUTAM SINGH STUDY MATERIAL ς Additional Material 0 7830294949

THANKS FOR READING ï VISIT OUR WEBSITE www.educatererindia.com

 lin k->nex t = head;

 //point first to new first nod e

 head = lin k ;

 }

}

Deletion Operation
Following code demonstrates the deletion operation in a circular linked list based

on single linked list.

//delete first ite m

struc t node * deleteFirs t () {

 //save reference to first lin k

 struc t node *tempLink = head;

 i f(head->nex t == head) {

 head = NULL;

 retur n tempLin k;

 }

 //mark next to first link as first

 head = head->nex t ;

 //return the deleted lin k

 retur n tempLin k;

}

Display List Operation
Following code demonstrates the display list operation in a circular linked list.

//display the lis t

void printLis t () {

http://www.educatererindia.com/

GAUTAM SINGH STUDY MATERIAL ς Additional Material 0 7830294949

THANKS FOR READING ï VISIT OUR WEBSITE www.educatererindia.com

 struc t node *ptr = head;

 print f("\ n[");

 //start from the beginnin g

 i f(head != NULL) {

 whil e(pt r ->nex t != pt r) {

 print f("(%d,%d) ",pt r ->key,pt r ->dat a);

 ptr = pt r ->nex t ;

 }

 }

 print f("]");

}

To know about its implementation in C programming language, please click here .

Data Structure and Algorithms - Stack
A stack is an Abstract Data Type (ADT), commonly used in most programming

languages. It is nam ed stack as it behaves like a real -world stack, for example ð a

deck of cards or a pile of plates, etc.

A real -world stack allows operat ions at one end only. For example, we can place or

remove a card or plate from the top of the stack only. Likewise, Stack ADT allows

all data operations at one end only. At any given time, we can only access the top

element of a stack.

This feature makes i t LIFO data structure. LIFO stands for Last -in -first -out. Here,

the element which is placed (inserted or added) last, is accessed first. In stack

terminology, insertion operation is called PUSH operation and removal operation is

called POP operation.

Stack Representation

http://www.educatererindia.com/
https://www.tutorialspoint.com/data_structures_algorithms/circular_linked_list_program_in_c.htm

GAUTAM SINGH STUDY MATERIAL ς Additional Material 0 7830294949

THANKS FOR READING ï VISIT OUR WEBSITE www.educatererindia.com

The following diagram depicts a stack and its operations ĭ

A stack can be implemented by means of Array, Stru cture, Pointer, and Linked List.

Stack can either be a fixed size one or it may have a sense of dynamic resizing.

Here, we are going to implement stack using arrays, which makes it a fixed size

stack implementation.

Basic Operations
Stack operations may in volve initializing the stack, using it and then de -initializing

it. Apart from these basic stuffs, a stack is used for the following two primary

operations ĭ

¶ push() ĭ Pushing (storing) an element on the stack.

¶ pop() ĭ Removing (accessing) an element from the stack.

When data is PUSHed onto stack.

To use a stack efficiently, we need to check the status of stack as well. For the same

purpose, the following functionality is added to stacks ĭ

¶ peek() ĭ get the top data element of the stack, without removing it.

¶ isFull() ĭ check if stack is full.

¶ isEmpty() ĭ check if stack is empty.

http://www.educatererindia.com/

GAUTAM SINGH STUDY MATERIAL ς Additional Material 0 7830294949

THANKS FOR READING ï VISIT OUR WEBSITE www.educatererindia.com

At all times, we maintain a pointer to the last PUSHed data on the stack. As this

pointer always represents the top of the stack, hence named to p . The top pointer

provides top value of the stack without actually removing it.

First we should learn about procedures to support stack functions ĭ

peek()

Algorithm of peek() function ĭ

begin procedure peek
 return stack[top]
end procedure

Implementation of peek() function in C programming language ĭ

Example

in t peek() {

 retur n stac k[top];

}

isfull()

Algorithm of isfull() function ĭ

begin procedure isfull

 i f top equals to MAXSIZE

 retur n tru e

 else

 retur n fals e

 endif

end procedur e

Implementation of isfull() function in C programming language ĭ

Example

bool isful l() {

 i f(top == MAXSIZ E)

 retur n tru e;

http://www.educatererindia.com/

GAUTAM SINGH STUDY MATERIAL ς Additional Material 0 7830294949

THANKS FOR READING ï VISIT OUR WEBSITE www.educatererindia.com

 else

 retur n fals e;

}

isempty()

Algorithm of isempty() function ĭ

begin procedure isempty

 i f top less than 1

 retur n tru e

 else

 retur n fals e

 endif

end procedur e

Implementation of isempty() function in C programming language is slightly

different. We initialize top at -1, as the index in array starts from 0. So we check if

the top is below zero or -1 to determine if the stack is empty. Here's the code ĭ

Example

bool isempt y() {

 i f(top == -1)

 retur n tru e;

 else

 retur n fals e;

}

Push Operation
The process of putting a new data element onto stack is known as a Push

Operation. Push operation involves a series of steps ĭ

¶ Step 1 ĭ Checks if the stack is full.

¶ Step 2 ĭ If the stack is full, produces an error and exit.

http://www.educatererindia.com/

GAUTAM SINGH STUDY MATERIAL ς Additional Material 0 7830294949

THANKS FOR READING ï VISIT OUR WEBSITE www.educatererindia.com

¶ Step 3 ĭ If the stack is not full, increments top to point next empty space.

¶ Step 4 ĭ Adds data element to the stack location, where top is pointing.

¶ Step 5 ĭ Returns success.

If the linked list is used to implement the stack, then in step 3, we need to allocate

space dynamically.

Algorithm for PUSH Opera tion

A simple algorithm for Push operation can be derived as follows ĭ

begin procedure pus h: stac k, data

 i f stack is full

 retur n nul l

 endif

 top ƀ top + 1

 stac k[top] ƀ data

end procedur e

Implementation of this algorithm in C, is very easy. See the following code ĭ

Example

void pus h(in t dat a) {

 i f(!isFul l()) {

http://www.educatererindia.com/

GAUTAM SINGH STUDY MATERIAL ς Additional Material 0 7830294949

THANKS FOR READING ï VISIT OUR WEBSITE www.educatererindia.com

 top = top + 1;

 stac k[top] = dat a;

 } else {

 print f("Could not insert data, Stack is full. \ n");

 }

}

Pop Operation
Accessing the content while removing it from the stack, is known as a Pop

Operation. In an array implementation of pop() operation, the data element is not

actually removed, instead top is decremented to a lower position in the stack to

point to the next value. But in linked -list implementation, pop() actually removes

data element and deallocates memory space.

A Pop operation may involve the following steps ĭ

¶ Step 1 ĭ Checks if the stack is empty.

¶ Step 2 ĭ If the stack is empty, produces an error and exit.

¶ Step 3 ĭ If the stack is not empty, accesses the data element at which top is pointing.

¶ Step 4 ĭ Decreases the value of top by 1.

¶ Step 5 ĭ Returns success.

Algorithm for Pop Operation

A simple algorithm for Pop operation can be derived as follows ĭ

begin procedure po p: stack

http://www.educatererindia.com/

GAUTAM SINGH STUDY MATERIAL ς Additional Material 0 7830294949

THANKS FOR READING ï VISIT OUR WEBSITE www.educatererindia.com

 i f sta ck is empty

 retur n nul l

 endif

 data ƀ stac k[top]

 top ƀ top - 1

 retur n data

end procedur e

Implementation of this algorithm in C, is as follows ĭ

Example

in t pop(in t dat a) {

 i f(!isempt y()) {

 data = stac k[top];

 top = top - 1;

 retur n dat a;

 } else {

 print f("Could not retrieve data, Stack is empty. \ n");

 }

}

For a complete stack program in C programming language, please click here .

Data Structure - Expression Parsing
The way to write arithmetic expression is known as a notation . An arithmetic

expression can be written in three different but equivalent notations, i.e., without

changing the essence or output of an expression. These notations are ĭ

¶ Infix Notation

¶ Prefix (Polish) Notation

http://www.educatererindia.com/
https://www.tutorialspoint.com/data_structures_algorithms/stack_program_in_c.htm

GAUTAM SINGH STUDY MATERIAL ς Additional Material 0 7830294949

THANKS FOR READING ï VISIT OUR WEBSITE www.educatererindia.com

¶ Postfix (Reverse -Polish) Notation

These notations are named as how they use operator in expression. We shall learn

the same here in this chapter.

Infix Notation
We write expression in infix notation, e.g. a - b + c, where operators are used in -

between operands. It is easy for us humans to read, write, and speak in infix

notation but the same does not go well with computing devices. An algorithm to

process infix notation could be difficult and costly in terms of time and space

consumption.

Prefix Notation
In this notation, operator is prefix ed to operands, i.e. operator is written ahead of

operands. For example, +ab . This is equivalent to its infix notation a + b . Prefix

notation is also known as Polish Notation .

Postfix Notation
This notation style is known as Reversed Polish Notation . In th is notation style,

the operator is postfix ed to the operands i.e., the operator is written after the

operands. For example, ab+ . This is equivalent to its infix notation a + b .

The following table briefly tries to show the difference in all three notations ĭ

Sr.No. Infix Notation Prefix Notation Postfix Notation

1 a + b + a b a b +

2 (a + b) zc z+ a b c a b + c z

3 a z(b + c) za + b c a b c + z

4 a / b + c / d + / a b / c d a b / c d / +

5 (a + b) z(c + d) z+ a b + c d a b + c d + z

6 ((a + b) zc) - d - z+ a b c d a b + c zd -

http://www.educatererindia.com/

GAUTAM SINGH STUDY MATERIAL ς Additional Material 0 7830294949

THANKS FOR READING ï VISIT OUR WEBSITE www.educatererindia.com

Parsing Expressions
As we have discussed, it is not a very efficient way to design an algorithm or

program to parse infix notations. Instead, these infix notations are first converted

into either postfix or prefix notations and then computed.

To parse any arithmetic expressio n, we need to take care of operator precedence

and associativity also.

Precedence

When an operand is in between two different operators, which operator will take

the operand first, is decided by the precedence of an operator over others. For

example ĭ

As multiplication operation has precedence over addition, b * c will be evaluated

first. A table of opera tor precedence is provided later.

Associativity

Associativity describes the rule where operators with the same precedence appear

in an expression. For example, in expression a + b ĭ c, both + and ð have the same

precedence, then which part of the expressio n will be evaluated first, is determined

by associativity of those operators. Here, both + and ĭ are left associative, so the

expression will be evaluated as (a + b) ĭ c.

Precedence and associativity determines the order of evaluation of an expression.

Following is an operator precedence and associativity table (highest to lowest) ĭ

Sr.No. Operator Precedence Associativity

1 Exponentiation ^ Highest Right Associative

2 Multiplication (z) & Division (/) Second Highest Left Associative

3 Addition (+) & Subtraction (ĭ) Lowest Left Associative

The above table shows the default behavior of operators. At any point of time in

expression evaluation, the order can be altered by using parenthesis. For example

ĭ

http://www.educatererindia.com/

GAUTAM SINGH STUDY MATERIAL ς Additional Material 0 7830294949

THANKS FOR READING ï VISIT OUR WEBSITE www.educatererindia.com

In a + b*c , the expression part b*c will be evaluated first, with multiplication as

precedence over addition. We here use parenthesis for a + b to be evaluated first,

like (a + b)*c .

Postfix Evaluation Algorithm
We shall now look at the algorithm on how to evaluate postfix notation ĭ

Step 1 ĭ scan the expression from left to right
Step 2 ĭ if it is an operand push it to stack
Step 3 ĭ if it is an operator pull operand from stack and perform operation
Step 4 ĭ store the output of step 3, back to stack
Step 5 ĭ scan the expression until all operands are consumed
Step 6 ĭ pop the stack and perform operation

To see the implementation in C programming language, please click here .

Data Structure and Algorithms - Queue
Queue is an abstract data structure, somewhat similar to Stacks. Unlike stacks, a

queue is open at both its ends. One end is always used to insert data (enqueue)

and the other is used t o remove data (dequeue). Queue follows First -In -First -Out

methodology, i.e., the data item stored first will be accessed first.

A real -world example of queue can be a single -lane one -way road, where the vehicle

enters first, exits first. More real -world examples can be seen as queues at the ticket

windows and bus -stops.

Queue Representation
As we now understand that in queue, we access bot h ends for different reasons.

The following diagram given below tries to explain queue representation as data

structure ĭ

http://www.educatererindia.com/
https://www.tutorialspoint.com/data_structures_algorithms/expression_parsing_using_statck.htm

