Unit- I Room Service

Room service is the service of food & beverages in guests room in hotels or other accommodation establishments, such as motels & serviced apartments. In all suite hotels it is often referred to as ‘in suite service’ or in room dinning.

Room service menus are charged higher than quite a few other dinning menus. Only very few hotels makes a good profit out of this service.

Room service offered in hotels the guest have a desire to have the facility to be provided where they stay and it can give the hotel a competitive edge and enhance its image.

Now, what the guest expect out of a well run room service is; prompt & courteous answering of the r/s telephones when orders comes; close attention to all their orders; the efficient & quick delivery of orders to their rooms.
Room service- General Principle

- The service is unsupervised therefore skilled waiter must be send to avoid any complaint.
- Carry it in such a way that cold food remain cold & hot food remain hot, till it reaches clients room.
- Knock at the door, enter only when guest allows.
- Bring back anything last order if left there.
- Don’t leave trays in corridor, but move them immediately to the bus trolley stationed in corners.
- Carry all orders for the same floor on a trolley together, to save time.
- Check everything in the tray before taking it to the room.
Loopholes & pitfalls to be avoided

➢ Make sure that the waiter come back to room service immediately after serving the order, specially at busy time.
➢ Waiter is responsible for clearing the tray one after serving the lunch or dinner.
➢ After B/F service is over at 10 am, the waiter starts clearing the trays.
➢ Note down the room nos. carefully to avoid problems delivering orders.
➢ Get the guests charges entered immediately to their accounts.
➢ Don’t touch & do not use anything belongs to guest in his absence, make it remains in its place.
➢ Anything leftover in the room after departure should be deposited in lost & found section.
Cycle of service scheduling & staffing

• Task 1: Room service Briefing
• Task 2: Preparing room service items for service periods
• Task 3: Storage of equipments & products
• Task 4: Preparing Room service equipments
Staffing

The room service is headed by a manager & other staff. The number of courses depends on the ‘house count’. Room service operates for 24 hours in three shifts.

The staff structure is

- Manager
- Sr. Captain
- Order Takers
- Captain
- Steward
- Asst. stewards
- Trainees/Apprentice

The morning shift, which has to attend to breakfast duty, is the busiest time, so maximum number of waiters are kept. The different meals served in R/S are: B/F, Lunch, Afternoon tea, Dinner & Supper/Late night meal. Workers will be scheduled on three shifts.

Gautam Singh, Hospitality Trainer, 07830294949
Staff scheduling

- The schedule should be prepared at least 2-3 days before it becomes effective. It must be duly authorized by R/S mgr.

<table>
<thead>
<tr>
<th>DAYS</th>
<th>Mon</th>
<th>Tues</th>
<th>Wed</th>
<th>Thu</th>
<th>Fri</th>
<th>Sat</th>
<th>Sun</th>
</tr>
</thead>
<tbody>
<tr>
<td>NAME</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mr. Ram</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td></td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td></td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>off</td>
</tr>
<tr>
<td>Mr. Laxman</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>off</td>
<td>✓</td>
</tr>
<tr>
<td>Mr. Bharat</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>off</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Mr. Suman</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>off</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Mr. Sunder</td>
<td>✓</td>
<td>✓</td>
<td>off</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Mr. Gautam</td>
<td>✓</td>
<td>off</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Mr. Rattan</td>
<td>off</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
</tbody>
</table>
Room service Menu planning

Room service menu is separate than other outlets. For B/F order card is used, which the guest hangs out on his door handle. The card card is in menu form.

These cards are collected from different floors & deposited in the room service department by room maids, at about 12:30 PM. The R/S can make ‘mise en place' accordingly for smooth service in the next morning.
Taking Room service orders

- Most R/S orders are given by telephone. Therefore the telephone is the first point of contact with R/S staff & good telephone technique is vital in creating that all important favorable first impression.

- The person answering telephone must have a good knowledge of the menu & a professional telephone manner.

- The benchmark of a 5* hotel is no more than three rings before it is answered.

Pay special attention to the following points:

- Introduction of department & self.
- Use of the guest name.

 e.g.- ‘Good morning Mr. Stephens. This is room service, mark speaking. May I help you?’
Suggestive selling

Order taking is a skill full art that reflects the efficiency of both the waiter & the establishment. An order taken down clearly & precisely would ensure that each guest gets exactly what he has ordered & in the right sequence. This is the time when a waiter can prove his salesmanship through suggestions on menu items that yield a high profit margin.
Explain dishes which demand explanations. Selling techniques, e.g.- “A shrimp cocktail comprises of fresh succulent shrimps garnish in tangy cocktail sauce, served on bed of crisp green lettuce”.

A course in the menu must have the logical sequence of a classical menu. The normal sequence would be: Appetizer

Soup
Main dish
Sweet dish
Coffee
Setting up trays & trolleys

Different people of different hotels set R/S trays & trolleys in different ways. The setting of trays & trolleys in a room service completely depends on the different types of food & beverage items offered in the menu, various accompaniments provided with various dishes.

Food & beverage items should be checked, with attention to details such as:

1. Food & beverage temperatures.
2. Portion sizes.
3. Visual presentation as per recipe standards.
4. Wine details including vintages.
Room service

Gautam Singh, Hospitality Trainer, 07830294949
Entering a guest room

How do you enter a guest room?
The procedures are:

- Approach the room quietly.
- Knock firmly & say “Room Service” clearly & confidently, remembering that your voice must be carry through a closed door.
- Listen for the guest response & react accordingly waiting outside or entering the room. If there is no response knock & announce once again. Do not go in until you have been asked to enter.
- When you have entered address the guest by name- “Good morning, Mr. John, here is your break fast.”. Continue to use surname while making polite conversation throughout the room service procedure.
Clearing room service areas

Imagine you stay in good hotel. What will be your reaction when you will find no room service people to clear the dirty equipments even after long time of serving the food. Its obviously going to be bad room service.

To avoid these situations there are certain procedures on the process of clearance. Room service O/T record the following in a dispatch sheet or checklist:

- The date.
- Room number.
- Whether tray or trolley taken.
- The time order was taken.
- The time delivered.
- Person delivering the order.
- The time order cleared.
Inventory

- By performing the inventory control each & every department will have the right idea of what are the equipments they have with the right count.
- The difference in the inventory check of two months shows either there is a mistake in the inventory done or things are missing or broken.
- The list of inventory is to be made in advance & the details noted in the stock register in case of any discrepancy.

Inventory Chart

<table>
<thead>
<tr>
<th>Item</th>
<th>Daily</th>
<th>Monthly</th>
<th>Quarterly</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Crockery</td>
<td>*</td>
<td>*</td>
<td>*</td>
</tr>
<tr>
<td>2. Cutlery</td>
<td>*</td>
<td>*</td>
<td>*</td>
</tr>
<tr>
<td>3. Glassware</td>
<td>*</td>
<td>*</td>
<td>*</td>
</tr>
<tr>
<td>4. Flatware</td>
<td>*</td>
<td>*</td>
<td>*</td>
</tr>
<tr>
<td>5. Linen</td>
<td>*</td>
<td>*</td>
<td>*</td>
</tr>
<tr>
<td>6. Cover/Table</td>
<td>*</td>
<td>*</td>
<td>*</td>
</tr>
</tbody>
</table>
Technology uses for better room services

Various types of trolleys used in the room service departments.
Alcoholic Beverages

Alcohol definition - alcohol is an odorless liquid obtain through the fermentation of a sugar containing liquid there are many member of the alcoholic family, but ethyl alcohol is the principle alcohol which is potable.

What is an alcoholic beverage?
Any potable liquid containing from 1% to 7% of ethyl alcohol by volume is known as an alcoholic beverage.

Spirit definition - a spirit is a potable alcoholic beverage obtained from the distillation of an alcohol containing liquid. In distillation all the alcohol can be separated from the liquid.

Fermentation – It is the process of adding yeast (saccharomyces ellipsoidus) to the ‘must’ ‘wort’ to covert the natural sugar in the grapes to ethyl alcohol
Unit II Alcoholic beverages Wine/u2

Introduction to wine: Wine is a potable alcoholic beverage obtained from the fermented juice of freshly gathered grapes.

HISTORY OF WINE MAKING

Grapes were cultivated before 6000 B.c & the fruit that was in surplus was crushed into juice. People did not know about why yeast spores (bloom) present in grapes nor did they understand what happened to grapes juice if it was left open to air. The sweet little liquid suddenly started to bubble (ferment) & the taste changed. Strange feeling happened to people when they drank it. Thus wine was born through ignorance.

There are four types of wines namely: 1. Table wine
2. Sparkling wine
3. Fortified wine
4. Aromatized wine

Table wine- These include Red, white & rose’ wine & are referred to as still wine as they lack carbonation. These wines are further classified into dry & sweet wines. Dry would mean that there is little or no sugar content. these are wines which normally accompany a meal. The alcoholic content of these wines is between 14 to 16%.
Wine

Example- Red - Bordeaux claret, Chateaux latour, Chateaux latif
White- Chablis, Chateaux neuf de pape
Rose’- Matius rose’ tavel rose, vin rose

2. Sparkling wine- wines which have carbon dioxide to make it fizzy. Champagne is the monarch in this category. Alcoholic content is less than 14%. This wines are drunk on festive occasions & throughout a meal.

Example- Moet et chandon, Dom perignon, Lanson black label, mums, Krug, chares hiedsick, Piper hiedsick, Asti spumante, Marques de pompadour.

3. Fortified wine- These are wines fortified by the addition of alcohol either during or after fermentation. This increase the alcoholic content from 15 to 21%. These wines are drunk either before or after a meal.

Example - Sherry, Port, Madeira, Marsala, Malaga
Wine

Aromatized wine-
They are still wines flavored with a herb or botanicals e.g., Vermouth is flavored with worm wood herb. Other example are compari, st. Raphael, Dubonnet etc.
Manufacturing of wine

Wine making begins with growing with vine. There are two distinct type of grape family.

The vitis labrusca

The grapes of vitis labrusca types produces wild flavor of wine.

The vitis vinifera

Most wines are manufactured from vitis vinifera type.
Grapes are plucked when the density of the bloom on the skin taken from a number of bunches is constant so that the grapes are fully ripened & has nothing more to gain from the plant.
Grading

Grapes are graded according to the quality.
Grapes are weighed according to determine the quantity required for fermentation. The ripe grapes are produced from a stalk. The stalk have a bitter taste due to presence of tannin.

Gautam Singh, Hospital
Grapes are crushed by feet in some region or by mechanical process to extract the juice called ‘Must’. The specific gravity of the must is measured. Which indicates the sugar content & thus the alcoholic content. If the quantity of the material yeast is less then cultural yeast is added, and in some cases if the sugar is less then extra sugar is added. The procedure is necessary as there is laws in most countries which specify the minimum alcoholic strength of wine. This process of enrichment is called “chaptalization”.

At this stage if red wine has to be made the skins of the grapes are allowed to come in contact with the juice, which gets the color from the skin. In the case of white wine the skin is separated immediately from the must.
Crushing

Rose’ wines are made by the allowing the skins of black grapes to come in contact with the juice for a short while to get the desired color. Sulfuring is added early in the fermented process to prevent air from oxidizing the juice, thereby converting alcohol into vinegar. The air content the bacteria ‘acetobactor’ which is aerobic in nature. This acetobactor can convert alcohol into vinegar, so2 being hungry for O2 takes up the O2 from the must & allows the wine yeast which is anaerobic to convert the grape sugar into alcohol. SO2 also form a coating in the surface of the juice to prevent the air from entering the juice & thereby allowing the yeast in the process of fermentation to do its work.
It is the process of adding wine yeast (saccharomyces Elipsoideus) to the must to convert the natural sugar in the grape to ethyl alcohol. In this process CO2 is simultaneously released making fermentation violent at first then slow. The yeast added is 3.5% of the volume of the juice. The process takes two days to two weeks according to the tradition of the house. The temperature maintained during the process is 64F to 77 F. Some water is added to this stage to control the acidity caused by the grape acids.

NATURAL SUGAR + YEAST + WATER = ETHYL ALCOHOL + CO2
Cellaring & Second pressing

Once the fermentation is complete, the running “vin de goutte” is run off into cask for maturing. The casks are filled to the top to exclude air. In some cases SO2 is also added. The filled casks are put in cellars for the wine to mature. This is called cellaring. The residue of skins (mare) left into the fermenting vats is sent for further pressing & the resultant juice is called “vin de press” is rich in tannin. The wine maker may decide whether to add vin de press to vin de goutte. The skin left are sent for third pressing & the juice fermented & distilled to produce “eau de vie de mare” a ‘water of life’ (pure alcohol). In this way the whole sugar is used up. The pure alcohol has no color, taste or smell & is used in compounding other beverages such as liqueurs.
Fermenting vats
Third pressing

Gautam Singh, Hospitality Trainer, 07830294949
Racking

Gautam Singh, Hospitality Trainer, 07830294949
Racking

At this stage wine are separated from the dead yeast which decompose giving an odd flavor to the wine. The dead yeasts settles at the bottom of the casks. The wine is carefully pumped into another casks without disturbing the dead yeast leaving some wine at the bottom called ‘Lees’ which is sent for distillation with “eau de vie de mare”.

FINNING & FILTERATION:

At this stage a gelatinous substances such as ‘Ising glass’ (bladder of sturgeon fish) or white opaque is added to collects the pigments present in the wine during the process to the bottom of the cask. The wine is then passed through fine filters. By this process the cloudy wine is converted into clear wine.
Blending

This is the process by which different wines from wine yards & different years are mixed to give the wine a consistency in quality.
Maturation

The wine is transferred to oak barrels & allowed to rest for one or two years to mature and pickup a soft and mellow character from the oak wood.
This is done before the wine looses for bouquet, quality and color, bottles are cleared & dried with hot air. Cool & dry weather is chosen for bottling. Bottles are closed with a soft cork applying the pressure with the fingers & are finally sealed.
Pasteurization

It is the process to age the wine & prevent it from further fermentation, the wine in bottle is immersed upright in double boilers with water, heated to temperatures between 180F-190F. The immersion is for 1-2 minutes.
Before marketing the bottles are aged so that the wine can stabilize. The period of aging dependents on the tradition of the house.
Vine Diseases - Phyloxera
Wine from France

France is the second largest producer of wine for many years. Their products are still considered the finest by the experts. France has set standard that the rest of the world tries to emulate or follow in the idea of wine production. The wines are expensive but quality excels.

The three most important district of France are.

- **Gironde** - Bordeaux- claret & white wines.
- **Cote d’or** - Burgundy
- **Marne** – champagne

Additional districts are: 1. Bas bourgogne 2. Bas Rhin (Alsace) 3. Loire- Anjou wines. 4. Cote de Rhone.

Gautam Singh, Hospitality Trainer
Wine from Italy

Italy is the largest producer of wine in the world. These wines are relatively inexpensive & can complete in any market.

The principle wine producing districts & their various producers which are acclaimed worldwide are as follows.

- **Piedmont district** - Barbera, Barolo, asti-spumante
- **Lombardi** - Valtellina
- **Venetia** - Valpolicela, soave
- **Tuscany** - Chianti, Bianco Toscana
- **Umbrian** - Fsascati, verdicehio classico
- **Sicily** - Marsala sweet desert wine.
- **Emilio** - Lambrusca (sparkling red wine)
Wine from Spain

Sherry - Fortified wine Made by Sol era Process around Jerez from the Palomino & Pedroximenze grapes, natural yeast fermentation is used.

The major wine area are Rioza, Baltic a, valdepenas, Barcelona, Gerona, Valencia, Tarragona, the Balearic islands, & south west Andalusia.

In the wines of Rioja, better wines will be labeled as ‘Reserva” Or ‘Grand reserva’.

The wines are Tintos, Blanco's, Malaga, oscura, etc.
Wine from Portugal

There are three major wine districts:
- Duoro
- Estremadura
- Island of Madeira

Many good table wines are produced, however the famous are Port, Rose, Madeira & Muscatel.

Portugal in recent years has been shipping bottles & table wine.

Port are fortified wines that requires at least 20 yrs of aging for maturity.

Gautam Singh, Hospitality Trainer, 07
Wines from South Africa

South African High Quality Wines

Gautam Singh, Hospitality Trainer, 07830294949
Australian best wines are name after the grape variety called varietal wines. Many of the wines are known by their names like Hock, Claret & Burgundy.

The grapes used are:
White- chardonnay, chenin blanc.
Sweet white- Muscat, Riesling.
Red- Cabernet sauvignon, pinot noir & merlot.
Wines from India

Indian white wines of middy variety are quite good & compared well with international standards. Most of the wine producing areas are near foothills of vindhyachal & Deccan plateau of Andhra pradesh, Karnataka, Maharashtra & Goa.

The varieties are: Bosca sherry, bosca vermouth, Bosca riesling, groves white, Riviera white, Golconda white, Golconda Ruby, Bosca rose.

Marques de pompadours – A sparkling wine from Pinot noir & chardonnay grapes. Known as a Omarkhayyam also in the international market.
Wines from California
Wine region of Bordeaux
Wine regions
Wine map of France
<table>
<thead>
<tr>
<th>White grapes</th>
<th>Types of grapes</th>
<th>Black grapes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aligote’</td>
<td></td>
<td>Cabernet sauvignon</td>
</tr>
<tr>
<td>Chardonnay</td>
<td></td>
<td>Carignan (B&W)</td>
</tr>
<tr>
<td>Chasselas</td>
<td></td>
<td>Gammay (B&W)</td>
</tr>
<tr>
<td>Chenin blanc</td>
<td></td>
<td>Merlot</td>
</tr>
<tr>
<td>Gewürztraminer</td>
<td></td>
<td>Temprenillo</td>
</tr>
<tr>
<td>Muller thurgan</td>
<td></td>
<td>Zinfandel</td>
</tr>
<tr>
<td>Muscat</td>
<td></td>
<td>Sangiovese</td>
</tr>
<tr>
<td>Palomino</td>
<td></td>
<td>Pinot noir</td>
</tr>
<tr>
<td>Pedroximenz</td>
<td></td>
<td>Syrah/Shiraz</td>
</tr>
<tr>
<td>Pinot blanc</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pinot grist</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Riesling</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Semillon</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sylvaner</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Syrah</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sauvignon Blanc</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Gautam Singh, Hospitality Trainer, 07830294949
Types of grapes

Gautam Singh, Hospitality Trainer, 07830294949
Sol era system & sol era process
Types of sherry
Other wines
Wine of other nations

Hungary - The wines of Hungary have been famous for centuries with ‘Tokay’ being recognized as the king of wines. The three famous tokay are: 1. Eszencia 2. Aszu 3. Szamorodni.

Canada - Specially wines from blackberry & apples. Wine growing areas are the Niagara Peninsula, Okanogan Valley.

Argentina - Wines are highly controlled by the government and produce both red & white. Other wine producing countries are Chile, South Africa & Greece. There are few Greek wines which are liked by the connoisseurs.

Gautam Singh, Hospitality Trainer, 07830294949
The golden rule of wine service

- White wine should be served with white meats.
- Red wines should be served with red meats.
- Appetizer wines are served with soups and appetizers.
- Dessert wine /fortified wine are served with fruits & sweets.
- Dry wines are served throughout the meal.
- Champagne should be served throughout the meal with any dish but mostly it is preferred with sweets and fruits.
- White wines served before red wines.

Wines are not taken with salads, in facts no beverage is go with salads. As salads contains dressing which contain vinegar & this vinegar reacts with the alcohol of the wine to give ether, which is poisonous.
Making recommendations to customers

Advising the customers on which beverage to choose to accompany a meal. However, it must be stressed that customers should at all times be given complete freedom in their selection of wines or other drinks.

- Aperitifs are alcoholic beverages that are drunk before the meal. If wine will be consumed with the meal, then the aperitif selected should be a ‘Grape’ (wine-based) rather than a ‘grain’ (spirit-based) aperitif, since the latter can spoil or dull the palate.
- The aperitif is usually a wine-based beverage. It is meant to stimulate the appetite & therefore should not be sweet. Dry and medium dry sherries, dry vermouth or Madeira are all good examples of aperitifs.
- Starter courses are often best accompanied with by a dry white or dry rose wine.
- National dishes should be complemented by the national wines of that country, for example, Italian red wine with pasta dishes.
- Fish & shellfish dishes are often most suited to well chilled dry white wines.
- Red meats such as beef and lamb blend and harmonize well with red wine.
- White meats such as veal and pork are acceptable with medium white wines.
- Game dishes require the heavier and more robust red wines to complement the full flavor of these dishes.
Cont.

- Sweets and desserts are served at the end of the meal and here it is acceptable to offer well chilled white wines that may come from the Loire, sauterne, bar sac or Hungary. These wines harmonize best with dishes containing fruit.
- The majority of cheeses blend well with port and other dry robust red wines. Port is the traditional wine harmonizing best with stilton cheese.
- The grain and fruit based spirits and liqueurs all harmonize well with coffee.
Wine tasting technique

• After assessing the clarity, color and the smell, take a small amount of the wine in the mouth together with a little air and roll it around so that it reaches the different parts of the tongue. Now lean forward so that the wine is nearest the teeth and suck in through the air. Doing this helps to highlight and intensify the flavor. (fortified wines, spirits and liqueurs are often assessed by sight and smell without tasting.

when tasting the following should be considered:

• The taste character of the wine is detected in different parts of the mouth but specially by the tongue: sweetness at the tip and the centre of the tongue, acidity on the upper edges, saltiness on the tip and at the sides, sour at the sides and bitterness at the back.
• Sweetness and dryness will be immediately obvious.
• Acidity will be recognized by its gum drying sensation, but in correct quantities acidity provides crispness and liveliness to a drink.
• Astringency or a tannin content, usually associated with red wines, will give a dry coating or furring effect, especially on the teeth and gums.
• Body, which is the feel of the wine in your mouth, and flavor, the essence of the wine as a drink, will be the final arbiters as to whether or not you like it.
contd

- Aftertaste is the finish the wine leaves on your palate.
- Overall balance is the evaluation of all the above elements taken together.
Storage of wine
Food & wine combination/harmony

Certain wine go well with certain food & some wines in particular enhance the flavor of particular food, for instance a good CHABLIS goes perfectly with shellfish or any full flavored fish. Red burgundies go extremely well with roast meats & games. The old rules always indicates that fish & light meats were served with light white wines. That rule is still good, but in these days and age there is no reason why a person shouldn’t drink the wine he prefers rather than the one he thinks he is right.

In spite of this a good wine waiter or sommelier should know exactly what wine goes with what particular food. Below are some basic principle to follow.

It must be noted that champagne can be drunk throughout a meal. It is a wine which reputedly goes with sweets & fruits.

one of the reason why wines are not popular in India is that, Indian foods are not really compatible with the wines. The spices of curries tend to kill the flavor of wine.
<table>
<thead>
<tr>
<th>WITH</th>
<th>SERVE</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Lobster, shellfish</td>
<td>Chablis, any dry white wine</td>
</tr>
<tr>
<td>2. Soups</td>
<td>Dry sherry, German white wine.</td>
</tr>
<tr>
<td>3. Fish</td>
<td>Dry white Bordeaux, German white Rose wines or German white.</td>
</tr>
<tr>
<td>4. Horsdeauvers</td>
<td>Clarets, Rose’ or light white wines</td>
</tr>
<tr>
<td>5. Entrees</td>
<td>White Bordeaux or burgundies.</td>
</tr>
<tr>
<td>6. White meat or poultry</td>
<td>Full-bodied Bordeaux, burgundies of Rhone.</td>
</tr>
<tr>
<td>8. Cheese</td>
<td>sweet wines or dessert wines like Hocks, Mousel, Sauternes.</td>
</tr>
<tr>
<td>9. Sweets</td>
<td>Hocks, Mossels, Sauternes, Madier Port etc.</td>
</tr>
<tr>
<td>10. Fruits</td>
<td></td>
</tr>
</tbody>
</table>
Food & wine harmony

<table>
<thead>
<tr>
<th>WITH</th>
<th>SERVE</th>
<th>TEMPERATURE</th>
</tr>
</thead>
<tbody>
<tr>
<td>2. Olives, almonds, canapés etc as an appetizer.</td>
<td>2. Dry sherry-Mantilla, Manzala</td>
<td>2. Well chilled</td>
</tr>
<tr>
<td>12. Salad</td>
<td>12. The acids in salad dressing doesn’t enhance the flavor of wines</td>
<td>12. ----------------.</td>
</tr>
</tbody>
</table>
Personalized wine service
Service of wine

White wine, Rose wine & champagne are served chilled, i.e 10°C or 50°F and red wines are served at room temp, at about 18°C or 68°F to 70°F. There are two types of wine opener lever or wing type and cork screw with knife.

The basic method of wine service are as follows:-

- Present the wine list to the guest (only one list is presented to the host).
- Take the order & ask when they would like to drink it, i.e. straight away or with the main course etc. Place the glasses on the table if necessary.
- Present the wine with the cork still in place, holding sloped in hand (the hand covered with the white napkins) with the label towards the guest. This ensures the right wine & year.
- Remove the wine to the side board, if red wine is ordered open as long as possible, before service allow the wine to breathe. If it is white wine open directly before service.
- Remove the tin foil or plastic covering from the top of the bottle carefully & remove the cork without disturbing the bottle. Wipe the inside of the bottle neck with a clean cloth.
- Attracts the host's attention & pour a small portion or amount in his glass for tasting. The reason for tasting of the wine by the host is.
 1. In case the wine is bad & corky.
 2. If there are any cork particle in the wine bottle they will go into the host glass & not the guests. If the host indicates approval pour the wine around the table, starting to the person to the right of the host.
Service of wine

- All the wine presentation is done from the right of the guest (except when there is difficulty in approach & if the policy status otherwise).
- Avoid dripping from the neck of the bottle when pouring & moving the bottle from the glasses, by using the end of a napkin. Do not cover the bottle of a napkin and never cover the level of the bottle with hand or napkin.
- Fill red wine two third of the glass, white wine three quarters.
- After serving the first rounds, remove the bottle to the side board or bucket (unless requested to leave it on the table & watch the table for further service).
- The red wines which have a deposition at the bottom of the bottle is fist decanted & then served on the table.
Wine glasses & equipment
Wine glasses & equipment
Where should I store wine after it is opened?

A re-corked, leftover bottle of red or white wine can be stored in the refrigerator for 3 – 5 days without compromising its flavor. Just take the red wine out of the refrigerator to let it come up to room temperature before drinking. A tightly corked leftover bottle of Champagne/sparkling wine can also be kept fresh in the refrigerator for 3 - 5 days.

What does “vintage” mean?

The vintage year on a wine label is the harvest year of the grapes from which the wine was made. The characteristics of a particular vintage year are determined by the weather conditions and resulting grape crop for that year. Unlike many fortified wines (such as port wine) or whiskey, wines are never blended and are thus always from the same vintage.
What is the dent in the bottom of a bottle of wine?

The dent on the bottom of a wine bottle is called a punt. It is found on the bottom of Champagne/sparkling wine bottles and many still wine bottles. The main purpose of the rounded bottom or punt is to strengthen the bottle--especially important for sparkling wines--but punts also can be useful for collecting sediment and for pouring wine (it provides a place to put your thumb).
Why is cork traditionally used to stop wine bottles?

Cork is used to stop wine bottles because its structure renders it light, elastic, and impermeable to most liquids and gases, thereby keeping the quality of the wine. Corks are produced using the bark of cork trees (a type of oak, *Quercus suber*) grown in the western Mediterranean, especially in Portugal. It is unique in that it can be peeled from the tree without hurting the tree.

Cork was known and used already back in Greece and Rome more than 2000 years ago. In medieval times wood was more generally used as stoppers for sacks and pottery urns. When glass bottles became common in the 17th century, wood did not work any more as a stopper. Cork was rediscovered and used ever since.

"Real" cork can sometimes develop a mould, and lead to 'corking' of the wine. This makes the wine completely undrinkable. To combat this, a number of wineries are turning to synthetic corks that have the wonderful sealing properties of real cork, but do not harbor moulds.
Flavored Wines

- *Vermouth*, a flavored wine product, probably originated in Turin in the 18th century as a sweet dessert wine with various Mediterranean and other herbs and plant materials added. A similar product, lower in sugar content, was produced in the south of France. Although sweet
Vermouth, a flavored wine product, probably originated in Turin in the 18th century as a sweet dessert wine with various Mediterranean and other herb and plant materials added. A similar product, lower in sugar content, was produced in the south of France. Although sweet vermouth is often considered an Italian type and dry vermouth usually refers to the French type, these two countries now produce both types.
• **Glogg**, a hot punch of Swedish origin, is frequently made with red wine and contains spices, almonds, and raisins.

• ...**Wine coolers**, popular in the United States, are wines of low alcohol flavored with fruit juices.
What is wine?

Wine is an alcoholic beverage made from fermented grape juice. Wines made from other fruits are always named accordingly. The chemical composition of wine is about 87.7% water, 11% alcohol, 1% acid, and 0.2% tannins.
Making of wine

• There are various processing steps in making and producing wine; these are described shortly below.

• Firstly, the grapes are allowed to ripen in the vineyard until they attain a suitable sugar content, which is about 18% or more, and the right level of acidity. During ripening in the vineyard, grapes may become infected by moulds, yeasts, and bacteria. These infections generally destroy desired flavors and color and introduce undesirable acetic acid and oxidized flavors. However, the infection of white grapes with the rot fungus called Botrytis cinerea is very advantageous. Infection of white grapes with this mould leads to the concentration of the juice in the berry and also gives a characteristic aroma to the wine.
Second step in making wine

The second step in the making of wine is the fermentation of the grapes with various yeasts and lactic acid bacteria. Grapes can be fermented by adding selected wine yeasts to dominate the yeast that originates from the vineyard (grape surface, leaves, and stems) and the winery environment (tanks, barrels, hoses). The addition of a selected yeast culture ensures a complete fermentation without the loss of aroma as well as the production of a wine of consistent flavor quality. Fermentation temperature and characteristics of the selected yeasts determine the amount and type of flavors produced. During spontaneous fermentation, a range of different yeasts grow at different stages of fermentation. Therefore, a winemaker must carefully guide spontaneous fermentations to reduce the risk of spoilage by unwanted microorganisms. Successful spontaneous fermentations can produce very flavorful wines with a variety of sensorial properties, e.g., aroma and consistency derived from the juice flavors.
Yeast Fermentation

The second step in the making of wine is the fermentation of the grapes with various yeasts and lactic acid bacteria. Grapes can be fermented by adding selected wine yeasts to dominate the yeast that originates from the vineyard (grape surface, leaves, and stems) and the winery environment (tanks, barrels, hoses). The addition of a selected yeast culture ensures a complete fermentation without the loss of aroma as well as the production of a wine of consistent flavor quality. Fermentation temperature and characteristics of the selected yeasts determine the amount and type of flavors produced. During spontaneous fermentation, a range of different yeasts grow at different stages of fermentation. Therefore, a winemaker must carefully guide spontaneous fermentations to reduce the risk of spoilage by unwanted microorganisms. Successful spontaneous fermentations can produce very flavorful wines with a variety of sensorial properties, e.g., aroma and consistency derived from the juice flavors.
Clarification of wine

Subsequent to fermentation, wine is clarified by filtration and then stabilized. Wine flavors can continue to change while the wine is stored in wooden barrels, stainless steel tanks, and glass bottles. At this stage of the process, various yeasts and bacteria may well be present in the wine; thus, the wine flavors could be further modified. These yeasts are generally considered spoilage yeasts. Depending on the type of microorganism and the extent of their growth, desirable fruit flavors can be replaced by unpleasant odor and taste. Different wines benefit from prolonged or only short-term ageing.
To make wine, grapes, which belong to the genus *Vitis* are used. One of the species, *V. vinifera* (often erroneously called the European grape), is predominantly used. Beverages produced from *V. labrusca*, the Native American grape, and from other grape species are also considered wines. When other fruits are fermented to produce a kind of wine, the name of the fruit is included, as in the terms peach wine and blackberry wine.
History and spread of viticulture

- *Vitis vinifera* was being cultivated in the Middle East by 4000 BC, and probably earlier. Egyptian records dating from 2500 BC refer to the use of grapes for wine making, and numerous Old Testament references to wine indicate the early origin and significance of the industry in the Middle East.
The Greeks

- The Greeks carried out an active wine trade and planted grapes in their colonies from the Black Sea to Spain. The Romans carried the practice of grape growing into the valleys of the Rhine and Moselle (which became the great regions of Germany and Alsace), the Danube (in modern-day Romania, Yugoslavia, Hungary, and Austria), and the Rhone, Saône, Garonne, Loire, and Marne (which define the great French regions of Rhône, Burgundy, Bordeaux, Loire, and Champagne, respectively). The role of wine in the Christian mass helped maintain the industry after the fall of the Roman Empire, and monastic orders preserved and developed many of the highly regarded wine-producing areas in Europe.
Voyages of Columbus

Following the voyages of Columbus, grape culture and wine making were transported from the Old World to the New. Spanish missionaries took viticulture to Chile and Argentina in the mid-16th century and to lower California in the 18th century. With the flood of European immigration in the 19th and early 20th centuries, modern industries, based on imported V. vinifera grapes, were developed. The prime wine-growing regions of South America were established in the foothills of the Andes Mountains. In California, the center of viticulture shifted from the southern missions to the Central Valley and the northern counties of Sonoma, Napa, and Mendocino. British settlers planted European vines in Australia and New Zealand in the early 19th century, and Dutch settlers took grapes from the Rhine region to South Africa as early as 1654.
Wine diseases

• The introduction of the eastern American root louse, phylloxera, seriously threatened wine industries around the world between 1870 and 1900, destroying vineyards almost everywhere that V. vinifera was planted, especially in Europe and parts of Australia and California. To combat this parasite, V. vinifera scions (detached shoots including buds) were grafted to species native to the eastern United States, which proved almost completely resistant to phylloxera. After the vineyards recovered, European governments protected the reputations of the great regions by enacting laws that allotted regional names and quality rankings only to those wines produced in specific regions under strictly regulated procedures. In recent times, present-day wine-producing countries have passed similar regulations.
Phylloxera on grape leaf
Fruit Wines

- **Fruit wines**, derived from fruits other than grapes, include cider, made from apples; Perry, produced from pears; plum wine and cherry wine, and wines made from various berries. They are frequently made by home winemakers and have some commercial importance in cold climates where wine grapes are not produced. Cider and Perry are important products in England and the northern parts of France; fortified cherry and blackcurrant wines are produced in Denmark. Important American fruit wines, produced mainly on the eastern coast, include apple, cherry, blackberry, elderberry, and loganberry wines. Various kinds of fruit wines are exported from The Netherlands, Denmark, Poland, Bulgaria, Hungary, Serbia, and Israel.
Fruit wines usually have sweet flavors and should retain much of the flavor and color of the original fruit. The musts are high in acid content and require dilution with water and the addition of sugar before fermentation. Many commercial fruit wines contain about 12% alcohol. When they are fortified with brandy, derived from the same fruit, the alcohol content is about 20%. Cider and Perry usually contain between 2% and 8% alcohol.
Ageing of Wine

- Many wines improve in quality during barrel and bottle storage. Such wines eventually reach their peak, and with further ageing begin to decline. During the ageing period, acidity decreases, additional clarification and stabilization occur as undesirable substances are precipitated, and the various components of the wine form complex compounds affecting flavor and aroma.

- Wines are usually aged in wooden containers made of oak, allowing oxygen to enter and water and alcohol to escape. Extracts from the wood contribute to flavor. Humidity affects the kind of constituents that escape, with alcohol becoming more concentrated in wine stored under conditions of low humidity and weakening with high humidity. As the water and alcohol are released, volume decreases, leaving headspace, or ullage, that is compensated for by the addition of more of the same wine from another container.
Some red table wines appreciate in quality, developing less astringency and color, and a greater complexity of flavor with ageing in oak cooperages of up to 500-gallon size for two to three years. In the best red wines, additional improvement may continue with two to twenty years of bottle ageing (the rate of ageing being lower in the bottle than in the barrel). Many dessert wines improve during cask ageing, particularly sweet Sherries, but extraction of excessive wood flavor must be avoided. Those rosé and dry red wines that will not improve with long cask and bottle ageing are aged for a short period of time, clarified, and then bottled. More than 90% of all table wines are probably marketed and consumed before they are two years old.
The dry white wine

- In dry white wines, a fresher flavor is considered desirable, and the chief benefit of ageing is greater clarification as various undesirable substances are precipitated. These wines are rarely aged in the wood for long periods, and some are never kept in wood. This change is possible because of the efficiency of new clarification methods. Earlier bottling of white wines reduces cost for storage and handling in wooden cooperages, and produces fresher, fruitier flavors. Sweet white table wines benefit by some ageing in wood.
The steps of winemaking

Harvesting

Fresh and fully ripened wine grapes are preferred as raw material for winemaking. In cool climates, as in Northern Europe and the eastern part of the United States, however, lack of sufficient heat to produce ripening may necessitate harvesting the grapes before they reach full maturity. The resulting sugar deficiency may be corrected by direct addition of sugar or by the addition of a grape juice concentrate. Grapes that are allowed to reach full maturity on the vine or that are partially dried by exposure to sun after harvesting are high in sugar content as a result of natural moisture loss (partial raisining as in the production of Málaga wines in Spain). A beneficent mould, *Botrytis cinera*, may also be employed to hasten moisture loss (as in the production of Sauternes in France). These grapes are used to produce sweet table wines. Special methods employed to produce these wines include the addition of sulphur dioxide, the use of small fermenting vessels during processing, or the use of cool temperatures - the objective being to stop the fermentation before all the sugar is fermented.
Harvesting

- Because of its effect on grape composition, proper timing of the harvest is of great importance. Premature harvesting results in thin, low-alcohol wines; very late harvesting may yield high-alcohol, low-acid wines. Harvesting may be completed in one picking or in several. The grape clusters are cut from the vine and placed in buckets or boxes and then transferred to larger containers (large tubs in Europe, metal gondola trucks in California and elsewhere) for transport to the winery. Mechanical harvesting systems, based on shaking the berries from the clusters or on breaking the stems, are widely used in California, Australia, France, and elsewhere.

- At the winery the grapes may be dumped directly into the crusher or may be unloaded into a sump and carried to the crusher by a continuous conveyor system.
In modern mechanized wine production, the grapes are normally crushed and stemmed at the same time by a crusher-stemmer, usually consisting of a perforated cylinder containing paddles revolving at 600 to 1,200 revolutions per minute. The grape berries are crushed and fall through the cylinder perforations; most of the stems pass out of the end of the cylinder. A roller-crusher may also be used. Ancient methods of crushing with the feet or treading with shoes are rare.
When red grapes are used to produce a white juice, as in respiration in the fruit, consuming oxygen and producing carbon dioxide, kills the skin cells, which lose their semi-permeability, allowing easy color extraction. There is also some intracellular respiration of malic acid. This respiration process is slow and in warm regions may result in wines of low color and acidity and distinctive odor. The Champagne region of France, crushing is accomplished by pressing. Red grapes are sometimes introduced whole into tanks, which are then closed. The resulting
Juice Separation

When the juice of white grapes is processed or a white wine is desired, the juice is usually separated from the skins and seeds immediately after crushing. Occasionally, to increase flavor extraction, the white skins may be allowed to remain in contact with the juice for 12 to 24 hours; however, this procedure also increases color extraction, sometimes undesirably. Two main procedures are employed to separate the juice from the solids. Much of the juice may be drained off by placing the crushed grapes in a container having a false bottom and often-false sides. This juice is called the free run juice, and the mass of crushed grapes is called the must, a term also used to refer to the unfermented grape juice, with or without skins.
More commonly, the crushed grapes are placed in a press. A horizontal basket press, applying pressure from both ends, is gradually supplanting the traditional basket press. Continuous screw-type presses are also employed, especially for drained pulp. The Willmes press, widely employed for white musts, consists of a perforated cylinder containing an inflatable tube. The crushed grapes are introduced into the cylinder, and the tube is inflated, pressing the grapes against the rotating cylinder sides and forcing the juice out through the perforations. Several pressings may be made without the extensive hand labor required for basket presses.
Continuous presses are practical for production of red wines, in which skins, seeds, and juice are all fermented together. Separation of the juice is simplified because fermentation makes the skins less slippery, and the amount of free run juice obtained is, therefore, much greater than for unfermented musts. Separation of the less slippery solids from the juice by pressing is also simplified.
Pomace

- The *drained pomace* (crushed mass remaining after extraction of the juice from the grapes), from white or red fermentations, may be used to provide distilling material for production of wine spirits. Water is usually added, the fermentation is completed, and the low-alcohol wine is drained off. The *pomace* may be further washed and pressed or may be distilled directly in special stills.
Must Treatment

- White musts are often turbid and cloudy, and settling is desirable to allow separation of the suspended materials. Such measures as prior addition of sulphur dioxide and lowering of the temperature during settling help prevent fermentation and allow the suspended material to settle normally. In many areas wineries centrifuge the white must to remove the solids. In this process a strong pulling force is created by circular motion. Musts are sometimes pasteurized, inactivating undesirable enzymes that cause browning. The addition of pectin-splitting enzymes to the musts to facilitate pressing is uncommon. Bentonite, a type of clay, may be added to musts to reduce total nitrogen content and facilitate clarification.
There is renewed interest in the pre-fermentation heat treatment of red musts to extract color and deactivate enzymes. This process, when performed rapidly at moderate temperatures and without undue oxidation, may be particularly desirable in the production of red sweet wines, employing short periods of fermentation on the skins; it is also suitable for use with red grapes that have been attacked by the parasitic fungus *Botrytis cinerea*, which contains high amounts of the polyphenol oxidase type of enzymes that cause browning.
Fermentation

The process of alcoholic fermentation requires careful control for the production of high quality wines. Requirements include suppression of the growth of undesirable microorganisms, presence of adequate numbers of desirable yeasts, proper nutrition for yeast growth, temperature control for prevention of excessive heat, prevention of oxidation, and proper management of the cap of skins floating in red musts.
• Grape skins are normally covered with bacteria, moulds, and yeast. The wild yeasts such as *Pichia*, *Kloeckera*, and *Torulopsis* are often more numerous than the wine yeast *Saccharomyces*. Although species of *Saccharomyces* are generally considered more desirable for efficient alcoholic fermentation, it is possible that other yeast genera may contribute to flavor, especially in the early stages of fermentation. *Saccharomyces* is preferred because of its efficiency in converting sugar to alcohol and because it is less sensitive to the inhibiting effect of alcohol. Under favorable conditions, strains of *Saccharomyces cerevisiae* have produced up to 18 percent (by volume) of alcohol, although 15 to 16 percent is the usual limit.
Use of the yeast *Schizosaccharomyces pombe* has been proposed for the early stages of alcoholic fermentation. Because it metabolizes malic acid, this yeast would be useful in excessively acid musts; however, commercial applications have not yielded consistently favorable results. The addition of lactic-acid bacteria to musts, using strains metabolizing malic acid, is now common.
• The number of undesirable microorganisms is greatest in partially rotted or injured grapes. Such damage may occur in harvesting or during transportation, particularly in warm climates. Suppression of undesirable microbial growth is required, and the most common method used is the addition of sulphur dioxide to the freshly crushed grapes at the rate of about 100 to 150 milligrams per liter. Sulphur dioxide is more toxic to undesirable microorganisms than to desirable microorganisms. When it is used in musts, an inoculum of the desired yeast strain, usually called a pure yeast culture, is added. Musts are rarely pasteurized, although this process may be applied when they contain undesirable oxidizing enzymes from moldy grapes.
• Enologists and technicians in the science of wine making do not agree on the most desirable yeast species and strain; however, strains of *S. cerevisiae* are generally used. The chosen strain is allowed to multiply as much as possible in sterilized grape juice and is then transferred to larger containers of sterilized grape juice, where it continues to grow until the desired volume is reached. Suitable pressed yeasts of desirable strains are added directly, avoiding the troublesome practice of building up and maintaining a pure yeast culture. About 1 to 3 percent of a pure yeast culture, or sufficient pressed yeast to provide a population of 1,000,000 cells per millilitre, is used.
Temperature during fermentation

- Temperature control during alcoholic fermentation is necessary to (1) facilitate yeast growth, (2) extract flavors and colours from the skins, (3) permit accumulation of desirable by-products, and (4) prevent undue rise in temperature, which kills the yeast cells. Optimum temperature for growth of common wine yeasts is about 25°C, and in many viticulture areas of the cooler temperate zone, grapes are crushed at about this temperature. Fermentation is seldom started at so high a temperature, however, because it is then difficult to prevent the temperature from exceeding 30°C during fermentation.
Extraction of flavors and colours is not a problem in white musts; the crushed grape mass is usually separated from the skins before fermentation. Fermentation of white musts at relatively cool temperatures (about 10 to 15°C) apparently results in greater formation and retention of desirable by-products. An undesirable feature of such relatively low-temperature fermentations is the longer period required for completion (six to ten weeks compared to one to four weeks at higher temperatures) and the tendency for the fermentation to stop while residual sugar remains. (This is not always considered undesirable - *i.e.*, in German wine production.) In practice white table wines are usually fermented at about 20°C.
Red wine fermentation

In red wine musts, the optimum color extraction consistent with yeast growth occurs at about 22 to 28°C. Alcoholic fermentation produces heat, however, and careful temperature control is required to prevent the temperature from reaching a point (about 30°C) where yeast growth is seriously restricted. At still higher temperatures, growth will stop completely. Modern temperature control is accomplished by the use of heat exchangers. Older methods include placing the fermenters in a cold room; using cold pipes in the fermenter; pumping the must through double-walled pipes, with cold water in the surrounding pipe; pumping the must through a sump containing cooling coils, and pumping the coolant through jackets surrounding the tank.
Fermentation continued

- Contact with air must be restricted to prevent oxidation during fermentation. In very large containers, the volume of carbon dioxide given off is sufficient to prevent entry of air. In small fermenters, fermentation traps are inserted, preventing entry of air but permitting exit of carbon dioxide. These traps are particularly desirable during the final stage of fermentation, when carbon dioxide evolution is slow. Following fermentation, small amounts of sulphur dioxide are added to help prevent oxidation. Ascorbic acid (50 to 100 milligram’s per liter) is sometimes employed to reduce the oxidation and thus the amount of sulphur dioxide required as an anti-oxidant, but is not generally recommended.
The cap of skins and pulp floating on top of the juice in red-wine fermentation inhibits flavor and color extraction, may rise to an undesirably high temperature, and may acetify if allowed to become dry. Such problems are avoided by submerging the floating cap at least twice daily during fermentation. This operation, comparatively easy with small fermenters, becomes difficult with large, tall fermenters of up to 100,000-gallon (380,000-litre) capacity. In large units the fermenting must is drawn off near the bottom and pumped back over the top. The use of small fermentation vessels permits a greater percentage of heat loss to the surrounding atmosphere, simplifying temperature control.
Post fermentation treatment

- With appropriate must composition, yeast strain, temperature, and other factors, alcoholic fermentation ceases when the amount of fermentable sugar available becomes very low (about 0.1 percent). Fermentation will not reach this stage when (1) musts of very high sugar content are fermented, (2) alcohol-intolerant strains of yeast are used, (3) fermentations are carried out at too low or high temperatures, and (4) fermentation under pressure is practiced. Fermentation of normal musts is usually completed in ten to thirty days. In most cases, the major portion of the yeast cells will soon be found in the sediment, or lees. Separation of the supernatant wine from the lees is called racking. The containers are kept full from this time on by "topping," a process performed frequently, as the temperature of the wine, and hence its volume, decreases. During the early stages, topping is necessary every week or two. Later, monthly or bimonthly fillings are adequate.
RACKING

- Normally the first racking should be performed within one to two weeks after completion of fermentation, particularly in warm climatic regions or in warm cellars, as the yeasts in the thick deposit of lees may autolyse (digest themselves), forming off-odors. Early racking is not required for wines of high total acidity - i.e., those produced in cool climatic regions or from high-acid varieties. Such wines may remain in contact with at least a portion of the lees for as long as two to four months, permitting some yeast autolysis in order to release amino acids and other possible growth factors favoring growth of lactic-acid bacteria. These bacteria then induce the second (or malolactic) fermentation.
Malolactic Fermentation

- Enologists have known for some time that young wines frequently have a secondary evolution of carbon dioxide, occurring sometime after the completion of alcoholic fermentation. This results from malolactic fermentation, in which malic acid is broken down into lactic acid and carbon dioxide. The fermentation is caused by enzymes produced by certain lactic-acid bacteria.

- Flavor by-products of unknown composition are also produced during this fermentation. Malolactic fermentation is desirable when new wines are too high in malic acid, as in Germany, or when particular nuances of taste and flavor are desired, as in the red wines of Burgundy and Bordeaux in France. In other regions, some producers may encourage malolactic fermentation, and others may discourage it, depending upon the particular character desired in the wine. In all regions, this second fermentation is somewhat capricious. One product, diacetyl (a flavor and aroma agent), is apparently beneficial at low levels and undesirable at higher levels.
At low temperatures, malolactic fermentation proceeds slowly, if at all. German cellars are often equipped with steam pipes, raising the temperature to encourage this fermentation. The bacteria may fail to grow because of a deficiency or complete absence of essential amino acids. Most lactic-acid bacteria growth can be inhibited by the presence of 70 to 100 milligram’s per liter of sulphur dioxide.

Excessive malolactic fermentation may produce wines too low in acidity (flat tasting) or with undesirable odors (mousy, sauerkraut, or diacetyl). Such faults may be prevented by earlier racking, filtration, and addition of sulphur dioxide.
Clarification

Some wines deposit their suspended material (yeast cells, particles of skins, etc.) very quickly, and the supernatant wine remains nearly brilliant. This is particularly true when 50-gallon wooden barrels, which have greater surface-to-volume ratio than larger containers, are employed. The rough interior of wooden cooperage facilitates deposition of suspended material. Other wines, particularly in warm regions or when large tanks are used, may remain somewhat cloudy for long periods. Removal of the suspended material during ageing is called clarification. The major procedures involved are fining, filtration, centrifugation, refrigeration, ion exchange, and heating.
Fining

- Fining is an ancient practice in which a material that aids clarification is added to the wine. The main processes involved are adsorption, chemical reaction and adsorption, and possibly physical movement. Proteins and yeast cells are adsorbed on fining agents such as bentonite (a type of clay formed mainly of montmorillonite) or gelatin. Chemical reactions occurring with tannins and gelatin may be followed by adsorption of suspended compounds. If an inert material, such as silica, is added to a cloudy wine, some clarification will occur simply by the movement of the particles of inert silica through the wine. This action probably occurs to a certain extent with the addition of any fining agent.

- Bentonite has largely replaced all other fining agents. Such fining agents as gelatin, casein, isinglass, albumin, egg white, nylon, and PVPP (polyvinyl pyrrolidone) may be used for special purposes, including removal of excess tannin or color.
Excessive amounts of metals, particularly iron and copper, may be present in the wine, usually from contact with iron or metal surfaces. These result in persistent cloudiness and require removal by such special fining materials as potassium Ferro cyanide (blue fining), long recommended in Germany. Cufex, a proprietary product containing potassium Ferro cyanide, may be used in the United States under strict control. Phytates have been used for removing iron. In modern winery operations excessive metal content is rare, mainly owing to the use of stainless steel equipment.
Filtration is another ancient practice, and early filters consisted of rough cloth-covered screens through which the wine was poured. Modern filter pads are made of cellulose fibers of various porosities or consist of membrane filters, also in a range of porosities. The pore size of some filters is sufficiently small to remove yeast cells and most bacterial cells, but filters operate not only because of pore size but also by a certain amount of adsorption. Diatomaceous earth-filter aids, commonly added to the wine during filtration, increase the functional life of a filter by retarding pore clogging.
Filtration is another ancient practice, and early filters consisted of rough cloth-covered screens through which the wine was poured. Modern filter pads are made of cellulose fibers of various porosities or consist of membrane filters, also in a range of porosities. The pore size of some filters is sufficiently small to remove yeast cells and most bacterial cells, but filters operate not only because of pore size but also by a certain amount of adsorption. Diatomaceous earth-filter aids, commonly added to the wine during filtration, increase the functional life of a filter by retarding pore clogging.
Filtration is another ancient practice, and early filters consisted of rough cloth-covered screens through which the wine was poured. Modern filter pads are made of cellulose fibers of various porosities or consist of membrane filters, also in a range of porosities. The pore size of some filters is sufficiently small to remove yeast cells and most bacterial cells, but filters operate not only because of pore size but also by a certain amount of adsorption. Diatomaceous earth-filter aids, commonly added to the wine during filtration, increase the functional life of a filter by retarding pore clogging.
Another method of tart rate stabilization is to pass a portion of wine through a device called an ion exchanger. If this ion exchanger is charged with sodium, it will replace the potassium in potassium acid tart rate with sodium, making a more soluble tart rate. Usually, if the potassium content of the blend of either treated or untreated wine is reduced to about 500 milligrams per liter, no further precipitation will occur. Exceptions may occur, however, and to be safe, tart rate and potassium contents and pH are included in the calculation. The use of ion exchange is illegal in several countries.
Many wines contain small amounts of proteins that may cause clouding either by precipitation or by reacting with copper or other metals to form aggregates that in turn form clouds. The use of bentonite removes some protein, and protein adsorption is increased if the wine is warm when fined. Pasteurization at 70 to 82°C also can be used to precipitate proteins, but in modern practice this process is seldom employed to aid clarification.
Sparkling wines
Sparkling wines

- Wines containing excess carbon dioxide are called sparkling wines. They are always table wines, usually containing less than 4% sugar. They can be produced using two basic techniques, namely via a second sugar fermentation, often induced artificially, or direct carbonation, involving the addition of carbon dioxide.
- Sparkling wines result when the escape of carbon dioxide from the fermenting liquid is prevented. The basic material is usually a dry white, rosé, or red table wine. Sufficient sugar is added to the basic wine to produce a pressure of about five or six atmospheres (units of pressure, each equal to 760 millimeters of mercury) following fermentation, assuming there is no loss of carbon dioxide. The size of the fermentation container may vary from 0.1 to 25,000 gallons. Bottles or tanks used for this type of fermentation must be capable of withstanding pressures as high as 10 atmospheres. Use of tanks equipped with pressure gauges allows excess pressure to be let off as needed. The special bottles used for sparkling wines are thicker than normal in order to withstand pressures in the range of seven to nine atmospheres. The neck of the bottle is shaped either for seating a crown cap or with a lip that catches a steel clamp to hold the cork in place.
The basic wine is clarified before being placed in the fermentation container. Several wines are usually blended to secure a base wine of the proper composition and flavor balance. The original alcohol content should be only 10-11.5%; the secondary fermentation will result in an increase of about 1%. The pH should be 3.3 or slightly less, with 0.7% or more total acidity calculated as tartaric acid, and the wine should have a fresh fruity flavor. No single or pronounced varietal character should predominate in the base wine, except in muscat-flavoured sparkling wines. Special care is necessary to avoid wines with any off character in odor or taste, or any trace of undesirable bacterial activity.

The clarified wine is placed in the fermentation vessel, and the requisite sugar for the fermentation, about 2.5%, is added, along with 1 to 2% of an actively growing yeast culture. The strain of yeast selected should ferment adequately in wines of 10 to 11.5% alcohol as well as under conditions of high pressure. The yeast cells should settle (agglutinate) rapidly and completely after fermentation.
Secondary fermentation

- The secondary fermentation is carried out at 10 to 12°C for best absorption of the carbon dioxide produced and should be completed in four to eight weeks. To save time, both tank and bottle fermentations are often conducted at temperatures of 15 to 17°C or even higher, and the secondary fermentation is frequently completed in 10 days to two weeks.
Tank fermentation

Additional differences between tank- and bottle-fermented wines may develop after secondary fermentation. Upon completion of fermentation, tank-fermented wines are filtered to remove the yeast deposit and then bottled. The filtration operation can introduce air, sometimes leading to oxidative changes affecting color and taste. In addition, it is difficult to accomplish the necessary filtration, removing any viable yeast cells, without reducing the level of the pressure that has been built up within the wine. Because of such difficulties, sulphur dioxide may be added to tank-fermented wines in order to prevent refermentation. While still in the tank, the wine is sweetened to the desired level by the addition of inert sugar syrup.
Bottle fermentation

• Bottle-fermented wines may also be clarified soon after fermentation. In the transfer process, the bottle-fermented wine is transferred, under pressure, to a second tank, from which it is filtered and bottled. In this case, as with tank-fermented wines, little ageing of the wine takes place in contact with the yeast, and sulphur dioxide may be added. The transfer process is widely used in the United States, Germany, and elsewhere.

• In contrast, in classic bottle fermentation, or method champ noise ("champagne method"), the wine remains in the bottle, in contact with the yeast, for one to three years. During this period of ageing under pressure, a series of complex reactions occur, involving compounds from autotyped yeast and from the wine, resulting in a special flavor. Bottle-aged wine is rarely transferred, filtered, or rebottled because the addition of sulphur dioxide, required to prevent oxidation, would interfere with the delicate aroma so carefully developed by ageing. Aged bottle-fermented wines therefore are usually clarified in the bottle. In this process the bottles are placed neck down in special racks at a 45° angle. Each day the bottle is turned to the right and left, inducing the yeast debris within to move down the side of the bottle onto the cork. This process, riddling or remuage, may last from a few weeks to several months. When it is complete, all of the yeast is on the cork, and the bottle is gradually brought to an inverted position of 180°. Mechanical remuage in large containers is widely practiced.
In the traditional procedure, the cork is slowly pulled out, and the pressure within the bottle propels the sediment out of the bottle. In the modern procedure, to prevent undue pressure loss, the bottle temperature is lowered to 10 to 15°C. The neck of the bottle is placed in a freezing solution and frozen solid. When the crown cap, or cork, is removed and the yeast deposit is ejected, the process is called disgorging, or *dégorgement*. The bottle is quickly turned to an upright position. When performed properly, disgorging (which is usually mechanized), involves the loss of only 3 to 5% of the wine. The bottle is held under pressure while it is refilled.
• The filling solution is a small amount of sweetening dosage, usually white wine containing 50% sugar. The amount added depends on the degree of sweetness the producer desires. Wines labeled brut, or sometimes nature (a term also applied to a still champagne), are extremely dry (very low in sugar content), usually containing 0 to 1.5% sugar; wines labeled extra dry or extra sec, or dry or sec, are sweeter, often containing 2 to 4% sugar; semi-dry or demi-sec wines may contain 5% or more sugar; and sweet or doux wines have about 8% sugar. In commercial practice, there is considerable variation in the exact degree of sweetness described by a specific term. If the dosage does not bring the contents to the desired level, more wine of a previously disgorged bottle is added. The closure, made of cork or plastic, is held in place with a wire netting.
Ageing of wine

• If the wine has been aged for two or three years, the sugar in the final dosage does not ferment, as that in the original dosage did, because few viable yeast cells remain. Even in wines aged for shorter periods, skilful displacing leaves few viable yeast cells on the sides of the neck of the bottle. Furthermore, the wine lacks oxygen to stimulate yeast growth and is lower in growth-promoting nitrogenous constituents and higher in alcohol than the original wine. The high carbon dioxide content also has a repressive effect on yeast growth. When bottle-fermented wines are fermented very rapidly and disgorged early, however, it is customary to add some sulphur dioxide with the final dosage to repress yeast growth.

• In the United States, tank-fermented wines must be labeled "fermented in bulk" or "bulk-fermented". Bottle-fermented wines may be labeled "bottle-fermented", but only wines handled by the classic method may be labeled "fermented in this bottle."
Carbonation

• Carbonation is a less demanding process but is used infrequently. Carbonated wines have many characteristics of fermented sparkling wines, and this simple physical process is much less expensive. The action of the second fermentation under pressure may produce especially desirable flavor by-products, however, and there is greater prestige value attached to fermented sparkling wines. In some cases, the wines used as a base for the carbonated sparkling wines may be over mature or otherwise inferior to those used for the fermented sparkling wines.

• The base wine used for carbonation, like the base wine for fermented sparkling wines, must be well balanced, with no single varietal flavor predominating. Young fruity wines are preferred, and the wine should not contain any trace of off-odors. Since no secondary fermentation takes place, wines of 11.5 to 12.5% alcohol are used. The wine should be tartar ate-stable, metal-stable, and brilliant, and the sulphur-dioxide content should be low. For white wines, the color should be a light yellow.
carbonation.

• A variety of techniques have been used for carbonation. Production of carbonation by passing the wine from one bottle to another, under carbon dioxide pressure, is now seldom employed because of its slowness. Carbonation has been produced in bottles after de-aeration, and this technique could be adapted to multibottle operations. Direct carbonation is frequently practiced with cold wine in pressure tanks, and if the stream of gas is finely divided, good carbonation is obtained. Pinpoint carbonation, spraying the wine into a pressure chamber containing carbon dioxide, may also be employed. Following the carbonation procedure, the wine is bottled under pressure. A cork or plastic or crown cap closure is applied, the label is affixed, and the wine is cased for distribution.

• In many countries, there is a higher tax on fermentation-produced sparkling wines than on carbonated sparkling wines. The two types also have different labeling requirements, and the process of carbonation usually must be stated on the label.
• There are a few low-level carbon dioxide wines on the market, produced either by fermentation or by carbonation. In Germany and other areas, tank-fermented wines, or "pearl" wines, of about one atmosphere pressure, are produced. In the United States, Portugal, and Switzerland, a number of wines are lightly carbonated at the time of bottling, adding piquancy.

• There are a few wines in which the carbon dioxide comes not from alcoholic fermentation, but from malolactic fermentation of excess malic acid in the wine. The *vinhos verdes* wines of northern Portugal are examples of this type. This fermentation is sometimes responsible for undesirable gassiness in red wines.
Typical shapes of glasses used for sparkling wine

A B C D
Q. What is Mimosa?

Mimosa is a cocktail frequently served at brunch and formal breakfasts such as those held on the morning of a wedding. Mimosas are also sometimes served in fancy hotels and in the first class section of aircraft. A mimosa contains orange juice and champagne, usually in a one to three ratio, and is served in a chilled champagne flute. When Grand Mariner is added, the drink is known as a Grand Mimosa.
What is Spitzers?

A spritzer is a mixed drink, which includes carbonated water or soda to make the drink light and fizzy. Traditionally, spritzers include wine, although nonalcoholic versions are also available, and some people make more complex spritzers with wine and juice or other ingredients. These drinks are very popular in the summer months, when they are cool, refreshing, and pleasant on hot days. They are extremely easy to make, and some companies also commercially produce packaged spritzers, which are available in various markets.

The word is derived from the German spritzen, which means “to spray.” Generally, a spritzer is served as soon as it is made, so that the carbonated water is still fresh and bubbly. The fizziness is reminiscent of champagne, without the expense of true champagne. It can also be dangerous, as the alcohol content is disguised, and it is therefore easy to overindulge on spritzers, especially when they integrate juice, which further cuts the alcohol.
A classic spritzer is made with white wine and carbonated water, and it may be served with a wedge of lemon. Some people like to use other fruits as garnishes. Rosés also make excellent spritzers because they have a light, fresh flavor. While red wines can be used, they can be a bit heavy. Some bartenders also like to mix in juices like peach, cranberry, or apple, and it is also possible to use ciders like apple cider in a spritzer. A nonalcoholic spritzer uses juice and carbonated water. If you plan on serving spritzers at a large event, you should be able to obtain a keg of carbonated water which will make it easy to dispense these drinks. You can use any white wine varietal, although you may not want to use a very expensive wine, as the carbonated water dilutes the flavor of fine wines. Dry or sweet wines can be used, depending on personal taste; you can pair tart ingredients like lemons with sweet wines, while sweeter garnishes such as mint can be excellent with dry wines. Try to make each spritzer as it is requested to ensure maximum carbonation.
Breathing of wine

To Breathe or Not to Breathe
That is the Question!
And the answer might surprise you

We’ve all heard that we should let wine breathe… Okay, but for how long? At what temperature? Or, should we let the wine breathe at all?

In May 1977, my friend Alexis Bespaloff published an article entitled “A Corking New Wine Theory” in New York Magazine… Although the article had nothing to do with corks, it nonetheless presented a radical new approach in regard to letting wines breathe.
Medical Properties of wine: ANTI-CANCER & CORONARY BENEFITS

- Moderate consumption of red wine on a regular basis may be a preventative against coronary disease and some forms of cancer. The chemical components thought to be responsible are catechins, also known as flavanoids and related to tannins. Catechins are believed to function as anti-oxidants, preventing molecules known as "free-radicals" from doing cellular damage. One particular form of flavinoid, called oligomeric procyanidin, recently proved to prevent hardening of the arteries.
DIGESTIVE PROPHYLAXIS

• A study published in January, 2003, in the American Journal of Gastroenterology showed that moderate, regular consumption of wine or beer decreases the risk of peptic ulcers and may help to rid the body of the bacteria suspected of causing them. Interestingly, both over-consumption, especially of beer, and any regular consumption of spirits at all, even at a low level, seemed to increase the ulcer risks.

• The Harvard School of Public Health conducted a 14-year study of over 100,000 women, aged 25 to 42, from 14 states. The Nurses Health Study required participants to complete a questionnaire every two years, detailing lifestyle choices and diagnoses of any medical
Red wine

- Red wine contains a number of chemicals that are health promoting. The polyphenol bioflavonoids resveratrol and quercitin, also found in green vegetables and citrus fruits, have demonstrated anti-inflammatory, antiviral and antitumor properties. In a laboratory culture of human oral squamous carcinoma cells one or both of these chemicals, in concentrations equivalent to that present in red wines, were effective in inhibiting the growth and proliferation of these cells. (17)
Organic wine

These wines also known as ‘green’ or ‘environmentally friendly’ wines, are made from grapes grown without the aid of artificial insecticides, pesticides or fertilizers. The wine itself will not be adulterated in any way, save for the minimal amounts of the traditional preservative, sulphurdioxide, which is controlled at source.
Alcohol-free, de-alcohol zed & low alcohol wine

These wines are made in the normal way and the alcohol is removed either by hot treatment distillation- which unfortunately removes most of the flavor as well, or, more satisfactorily, by a cold filtration process, also known as reverse osmosis process. This removes the alcohol by mechanically separating or filtering out the molecules of alcohol through membranes made of cellulose or acetate. At later stage, water and little must are added, thus attempting to preserve much of the flavor of the original wine.

The definition for these wines are:

- Alcohol free: maximum 0.05% alcohol
- De-alcohol zed: maximum 0.50% alcohol
- Low alcohol: maximum 1.2% alcohol
Introduction - Beer is a potable beverage fermented from cereals & malt, flavored with ‘Hops’. The alcoholic content is between 3% to 5%, though in some Indian beers we got a limit up to 13% volume/volume.
Ingredients used (brewing materials):

- Malt
- Hops
- Sugar
- Yeast
- Fining
- Priming
- Water (liquor)

Gautam Singh, Hospitality Trainer
The best cereals used in the manufacture of beer is barley. The barley used is malted one, i.e. the starch present in the barley is converted into sugar.
Hops/Humulus lupulus

There are specially grown for brewing & the best are produced in Kent, Sussex & Worcestershire. The part of which is used is the flower, the flower contain an oil, which gives beer its flavor.
Sugar

Specially graded & refined sugar is used which aid the fermentation and the production of alcohol & also adds sweetness.
Yeast

Yeast is a living thing and is added to the beer at a set time to cause fermentation. Yeast & sugar produce alcohol & gives off CO2 gas. During fermentation the yeast multiplies & thus new yeast is collected & is used for future brews.
Fining

This is a substance obtained from the sturgeon fish which is commonly called ‘icing glass’ and used for attracting sediments to the bottom of the casks.

Gautam Singh, Hospitality Trainer, 07830294949
Priming

This is a solution of sugar & hops added to some beer at racking stage. The function of the solution is to develop the condition of the beer by remaining yeasts reacting with sugar to give off CO2 in the cask.
Water/ liquor

Usually drawn from a special well & have certain minerals in the makeup which helps a beer is to develop its characteristics.
Brewing procedure

Fully ripened barley is taken for the production of beer. It is soaked in water & spread in floors to germinates. After the germination is over, it is placed on malting floors, dried & toasted. Color from pale to very dark according to the brew. This process up to this stage changes the starch in the cereal to sugar. The barley is now termed as ‘Malt’.

The malt is cleaned & then crushed finely. Called ‘Grist’, it is mixed with hot water, this mixer is called ‘Mash’. The mash is allowed to infuse.
The container called ‘Copper’

The extract is drained off to a clean container called ‘Copper’. Hops & sugar are added. The liquid is boiled to concentrate it & is termed ‘Wort’. It is removed off to remove hops. The wort is cooled to 16c & is run in to a fermenting vessel called ‘VAT’. At this stage yeast is added & fermentation takes place. During the fermenting process the yeast & sugar reacts to give alcohol & CO2 gas.
Fermentation

Yeast reproduces itself after the fermentation is over & is collected for re-use. The co2 gas is collected & is used for bottled beer. After 36 hrs, the wort is transferred to fermenting squares. It takes 7 days from the mashing to the wort becoming beer. The beer is now matured & racked in to wooden casks. Finings are added at this stage to brighten beer & is allowed to settle, finally the beer is tasted for quality.
1. **Lager** - the wort is fermented by a bottom fermentation type of yeast. I.e. in the fermenting vessel the yeast is added from the bottom of vessel & then is stored in refrigerated cellars (lager) at freezing for a 6 months. The process matured the beer. Lager is a German word meaning to store. Pilsner lager is stored in the lime stone caves of ‘pilsner in Czechoslovakia.
2. Ale beer

Ale is synonymous with beer except that it is a term used for ordinary mild beer while bitter beer is referred to as beer.

3. Porter

It is a black beer achieved by roasting the malt. It is more malt in flavor with less flavoring of hops. This name is originated from the fact that, London porters used to drink this beer.
4. Stout Beer

It is similar to porter in as much as the malt is roasted. It has a strong malt flavor & sweet taste, but has a strong hops character. This a name given by the Irish & the meaning almost similar to porter.

5. Bock beer
A heavy sweet beer, dark brown in color, rich in taste, usually served in the spring.
6. Weiss Beer

Made from wheat, malt, using top fermentation of yeast with second fermentation in the bottle.

7. Draught Beer

These are usually racked in casks, which have been sterilized before being distributed to the market. The beer is sold/serve from the casks itself, which have the pumping system attached to it. The beer passes through a chilling unit before it is being topped out.
Service of beer

Beer should be served at a temperature of 13°C - 15°C. The only beer served chilled is lager. Also draught beer on its route from keg/cask to the pumping unit often passes through a chilling unit. Draught beer should be served with a small head while serving.

When pouring bottle beer it should be poured down the inside of the glass which is held at an angle of 45°. It should be poured slowly. This is specially important where a beer-
Service of Beer

Works a lot & may produce a large head quickly if it is not poured slowly & carefully. All the glasses used should be spotlessly clean, there shouldn’t be grease or lipstick marks or else the beer will go flat quickly. More care need while pouring in hot weather as this cause the beer much more. The neck of the bottle shouldn’t be placed in the glass while pouring while bottle beer have a sediments when pouring, a little beer must be left in the base of the bottle holding the sediments back.

Gautam Singh , Hospitality Trainer , 07830294949
International Beer brands
International Beer festival

Popular Beer Brands
- Becks
- Heni
- Bass
- Guiness
- Anstel
- Heineken

Indian Beer Brands:
- God Father
- King Fisher
- Sandpiper
- Golden Eagle
- Hayward's 5000
Other fermented beverages

Unit-4 /u4
Other fermented & brewed beverages

Sake
A sweet golden wine made from fermenting freshly steamed glutinous rice. Most rice wines are low in alcohol. The most well known Japanese rice wines are sake & mirin.

Sake is a Japanese word meaning alcoholic beverage. Its other name is ‘Nihonshu’.

Sake is widely refer to in English as ‘Rice wine’. It is served warm in a small cup called ‘Sakazuki’. It has 18% alcohol.
Cider is a natural, liquid beverage that is obtained from pressing of a finely ground fruit such as apples, under the proper conditions, it undergoes a natural fermenting process, which yields an alcoholic juice. It has 5% alcohol & appears golden yellow & often cloudy. It is very popular in UK, Normandy, Ireland & Spain. Tempest is the Indian cider brands produced in (HP).
Perry

Perry or peer cider is an alcoholic beverage made of fermented peer juice. It is similar to cider. It has a similar alcoholic content around 5% & above.

Real Perry, it is fermented & distilled peer juice. Like applejack, fermented & distilled apple juice.
Alcohol free wines/De alcohol zed wines

A category of wine produced by one of the several special processes that remove the alcohol, it is known as non-alcoholic wine. It is legally a non-alcoholic product it contains less than 0.5% alcohol (about the same amount in most freshly squeezed orange juice. It has less than half the calories of regular wine. De alcohol zed wines simply doesn’t have the body & mouth full of real wine.

These wines are made by fermenting grape juice, later on alcohol is removed by hot treatment, i.e. distillation which may also removes most of the flavor.

Alcohol free 0.05%, De alcohol zed 0.5%, Low alcohol 1.25%.
Unit -5 /u5

- Table cheeses
Table Cheeses

Introduction
Cheese is a product of pure, fresh milk, cream or milk & cream mixed together. It is made by first pasteurizing good quality milk, curdling it with the addition of bacteria & rennet. The solid portion - curd is separated from the liquid portion – whey. The curd is put into moulds to mature & becomes cheese.

The character, texture & flavor are dependent on the land in which the cattle graze.
Types of Cheese

Cheeses are divided into

1. Hard cheese
2. Semi-hard cheese
3. Soft or cream cheese
4. Blue cheese
1. Hard Cheese

English Cheese – Cheddar

Derby

European cheese - Edam

Gouda

Gruyere

Parmesan
2. Semi-Hard Cheese

English - CAE Philly

European - Pont l’Eveque

Port salut
Soft or cream Cheese

European – Brie, Camembert, Demi-sel
Blue Cheese

English – Dorset blue
 Stilton

European – Danish Blue
 Gorgonzola
 Roquefort
Production Of Cheese

Milk
Soft curd

Natural souring ~ Coagulant
Starter culture ~ Rennet

Remove whey ~ Firm Curd
Salting
Molding & pressing
Fresh hard – Press curd
Bandaging
Ripening/Maturation

Gautam Singh, Hospitality Trainer, 07830294949
Service of cheese

Cheese comes in different containers, wrapper & coating in different shapes & sizes. Cheese should be served on a cheese plate or half plate with a small cheese knife at RHS of the cover. Cheese is served to the guest by placing al least 6-8 cheese bowls titled on a cheese tray all the bowls contains different variety of cheese. A cheese knife is provided on the cheese board. Celery stick, water cress, cream cracker biscuits accompanies to this in addition to this a fresh glass of water & salt n pepper are provided on the table. A finger bowl should be placed at the end of the service. It is also served as accompaniments with many soups. Cheese sandwiches are very popular.

Gautam Singh, Hospitality Trainer, 07830294949